Pediatric Malnutrition: cased based approaches from Nutrition and Gastroenterology

Liliane Diab M.D.

Jason Soden M.D.

3rd Annual Children's Hospital Colorado Virtual Pediatric Care Symposium October 26,2022

Disclosure

Liliane Diab M.D. Jason Soden M.D.

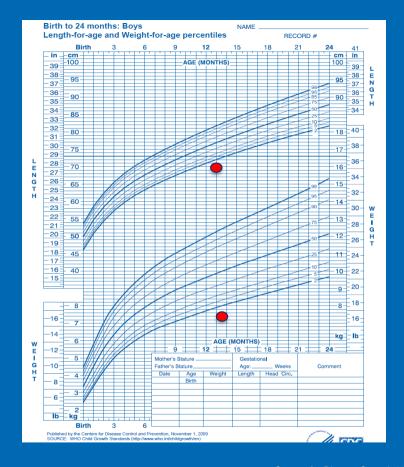
No relevant financial disclosures to report.

Diagnosis and Assessment of Severity

Discuss the standardized criteria for diagnosing pediatric malnutrition

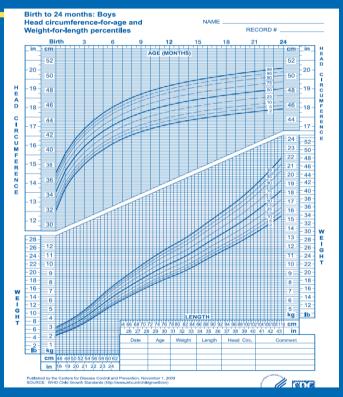
Differentiate between malnutrition and appropriate or expected growth

Review the different types of growth charts


Defintions

Underweight

- > 2 SD below median (50th percentile)
- < 2nd %ile for age
- Underweight ≠ Wasting


Stunting

- Length z score ≤ -2
- Severe : Length z score ≤ -3

Wasting= Protein Energy Malnutrition (PEM)

- weight relative to the length (under 2)
- weight relative to the height (BMI chart for >2)
- "Ideal Body Weight" (50th % W/L or ht)

90-110 % Normal

80-89% Mild

70-79% Moderate

Less than 70% severe

Normal Weight Gain

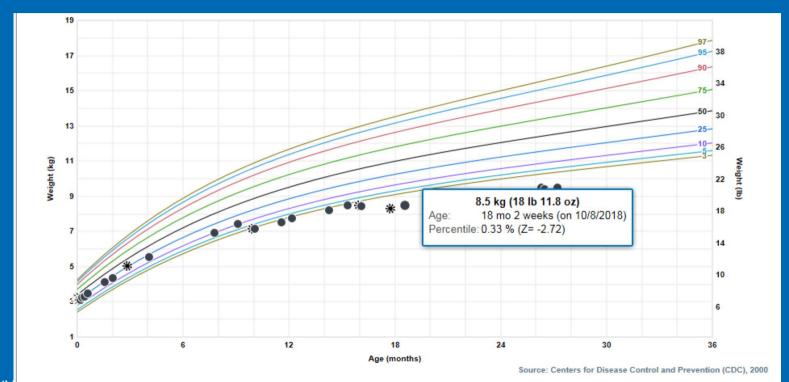
0-3 months 25-30 g per day (closer to 20-30 g/d after the 1st month of life)

3-6 months 15-20 g per day

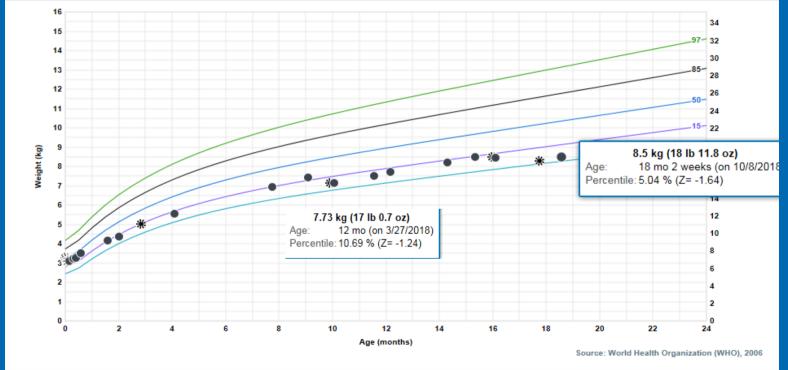
6-9 months 10-15 g per day

9-12 months 10 g per day

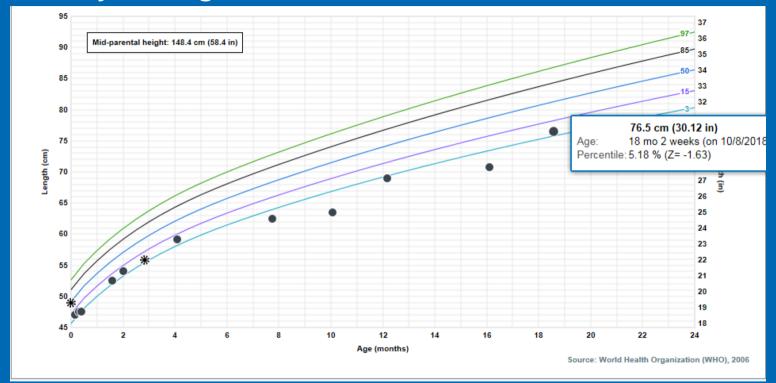
After 12 months 6 g per day


Diagnosing Malnutrition

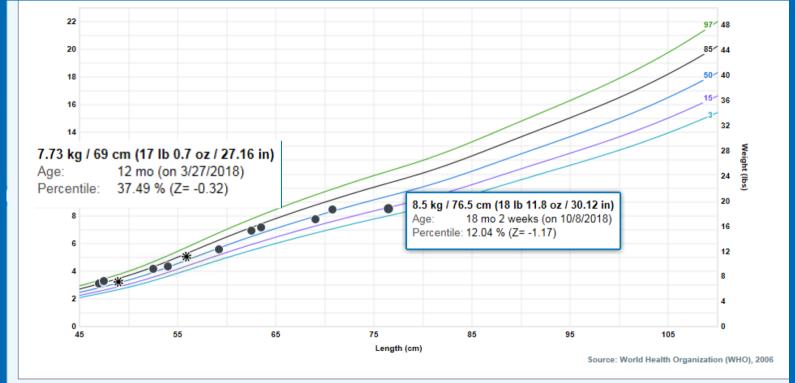
Method	No malnutrition	Mild malnutrition	Moderate malnutrition	Severe malnutrition
Weight for height percent of median	>90%	80-89%	70-79%	<70%
Weight for height z score	> -1	-1 to -1.9	-2 to -2.9	< -3
BMI z score	> -1	-1 to -1.9	-2 to -2.9	<-3
Length/height z score	Not Applicable	No data but z score less than -2 suggest stunting	No data but z score less than -2 suggest stunting	<-3

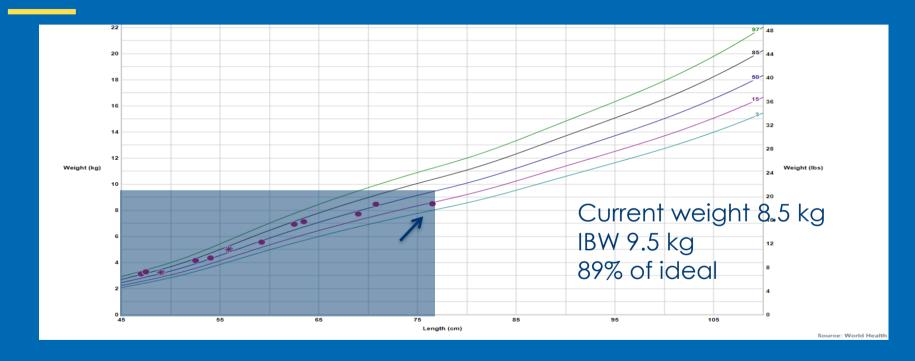

Case Study 1

18 ½ months old former term infant AGA referred to CHCO for growth faltering



Case Study 1: Weight (WHO Chart for 0-24 months)

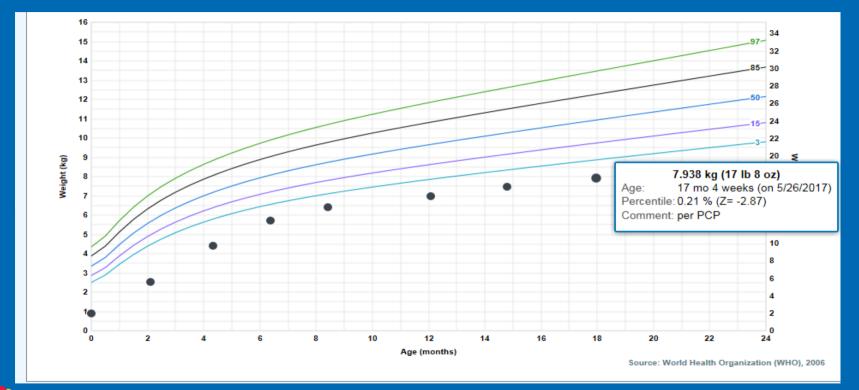

Case Study 1: Length


(WHO, 2006)

Case Study 1: Weight for Length

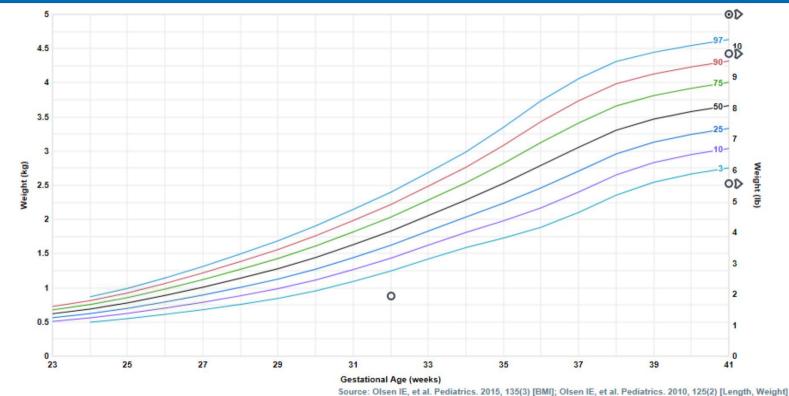
Ideal Body Weight for under 2 use weight for length chart.

(WHO, 2006)


Case Study 1: Nutrition Status Assessment

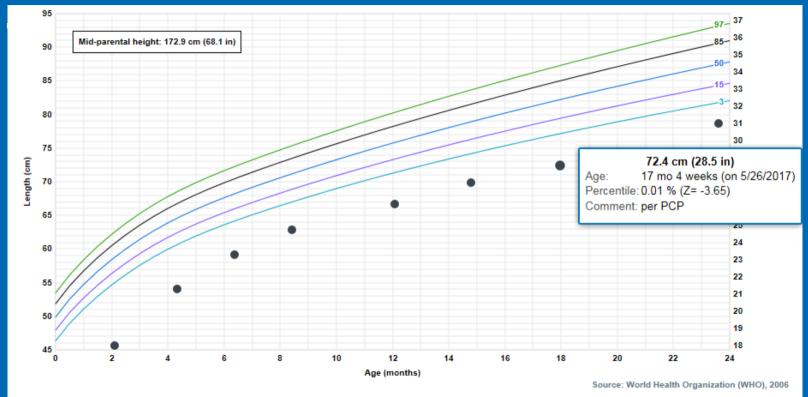
- ✓ Weight for length z score -1.19
- √89% of ideal body weight

Final Assessment: Mild Malnutrition



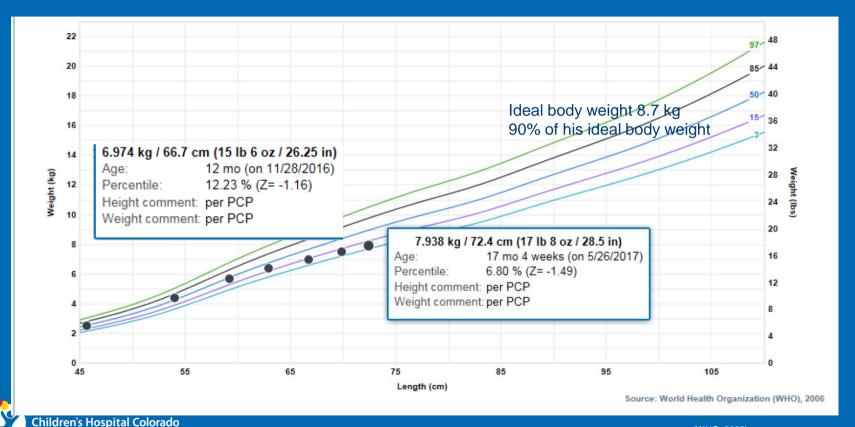
Case Study 2 18 months old former 32 weeker

Fenton or Olsen Chart


occ references since for additional information.

Which Growth Chart to use for a premature infant?

- ◆Up to 36 weeks gestation : Olsen (not suited for monitoring)
- ◆36-50 weeks corrected GA: Fenton
- ◆4-8 weeks post term use WHO charts (correct for prematurity until age 3)

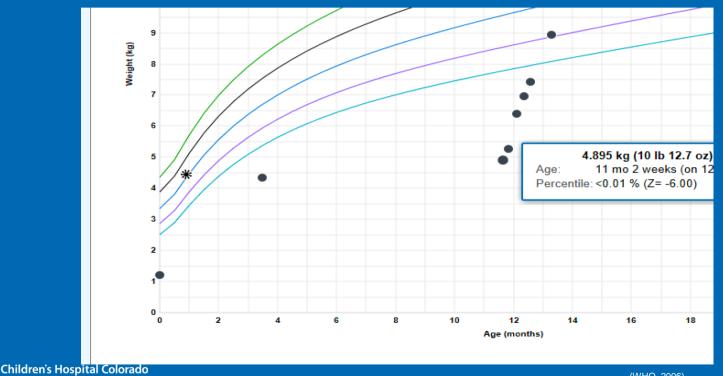


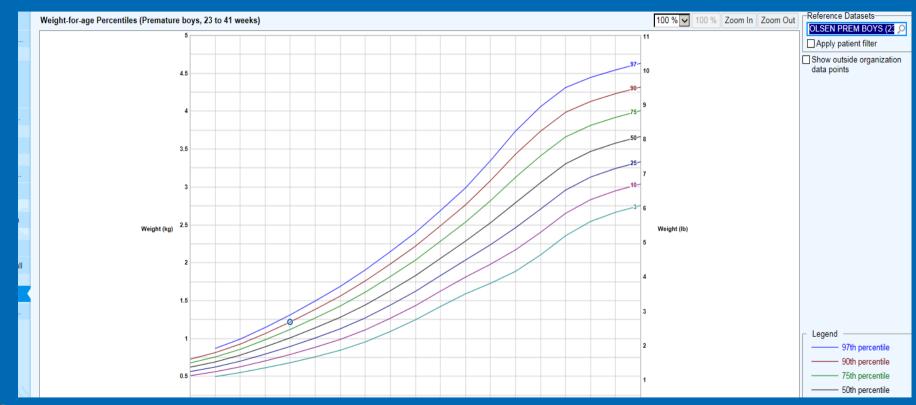
Case Study 2: Length

Case Study 2: Weight for Length

Case Study 2: Nutrition Status Assessment

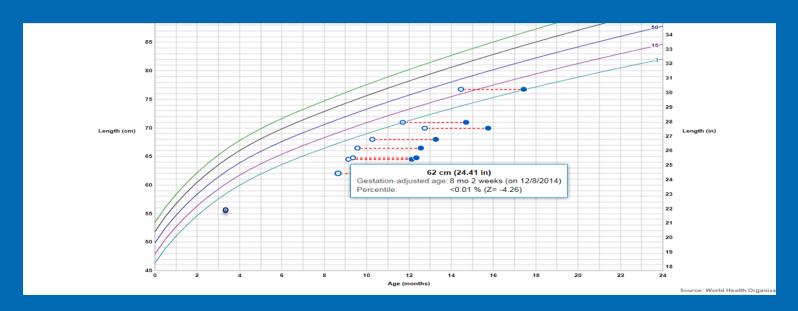
- ✓ Weight for length z score -1.49
- √90% of ideal body weight
- ✓ Length z score less than-3 (even when corrected for gestational age)
- ✓ Weight gain velocity is normal


Final Assessment: normal nutrition status with short stature for age (it may take until 3 years old to achieve a catch-up linear growth)


Case Study 3

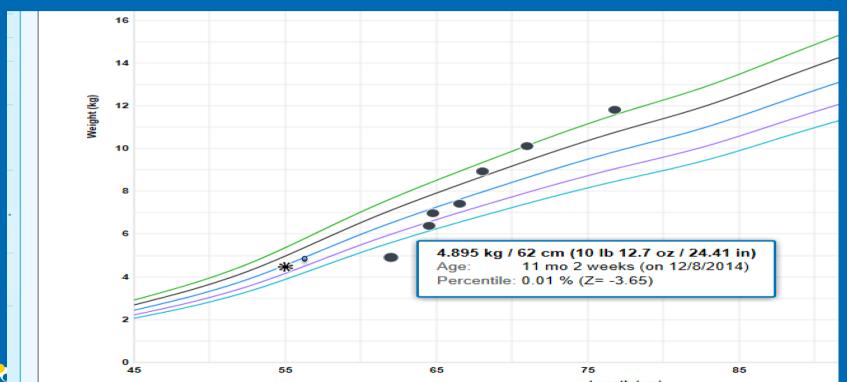
11 months old former 27 weeker

BWT: 2lb 11 oz, (AGA? SGA? OR LGA?)


Olsen Chart

(Olsen, 2015)

Length



(Olsen, 2015)

Weight for Length

Current weight 4.8 kg IBW 6.8 Kg 72% of ideal with severe stunting

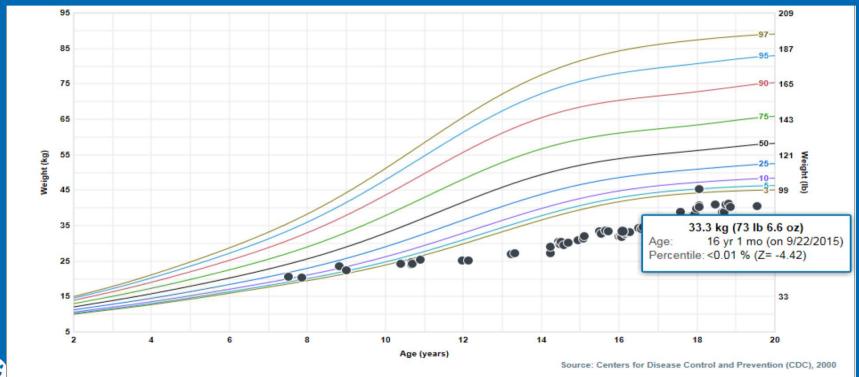
Children's Hospital Colorado

Here, it's different.™

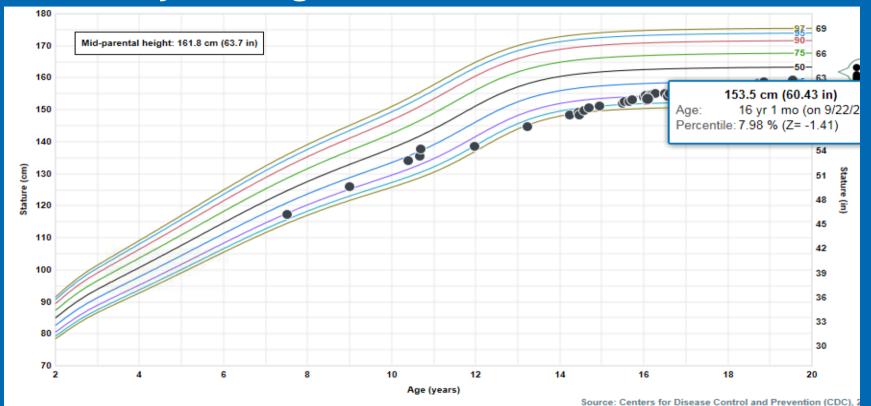
See References slide for additional information.

Case Study 4 Nutrition Status Assessment

- √72% of ideal body weight
- ✓ Weight for Length z score less than -3
- ✓ Severe Stunting

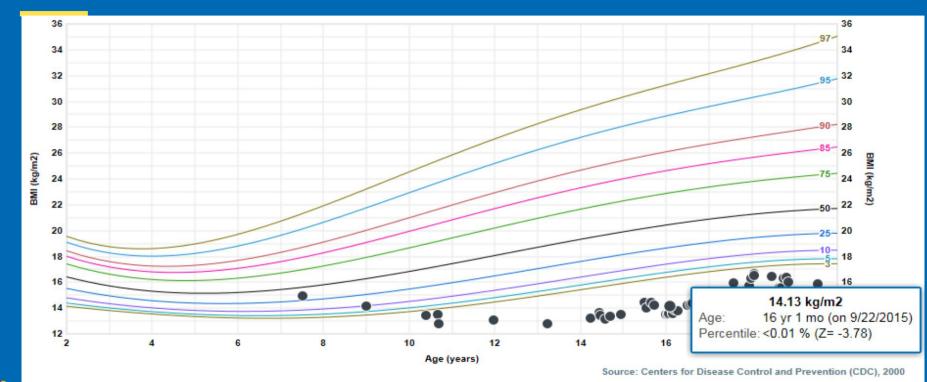

Final Assessment:

Severe Malnutrition



Case Study 4

16 years old with NF, referred for concerns about her weight gain



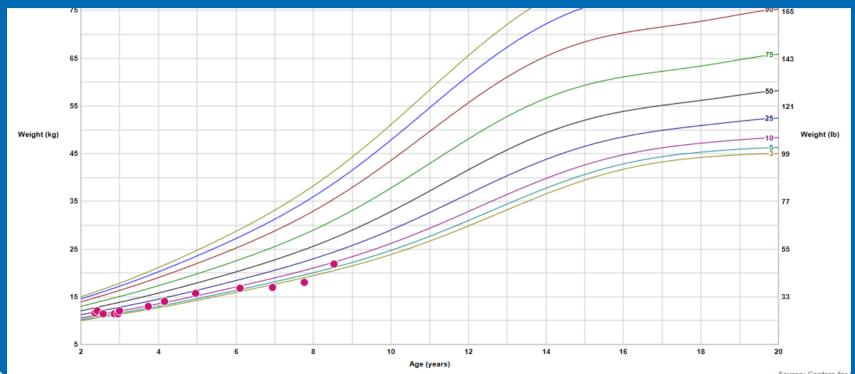
Case Study 4: Length

Case Study 4: BMI

Case Study 4: Nutrition Status Assessment

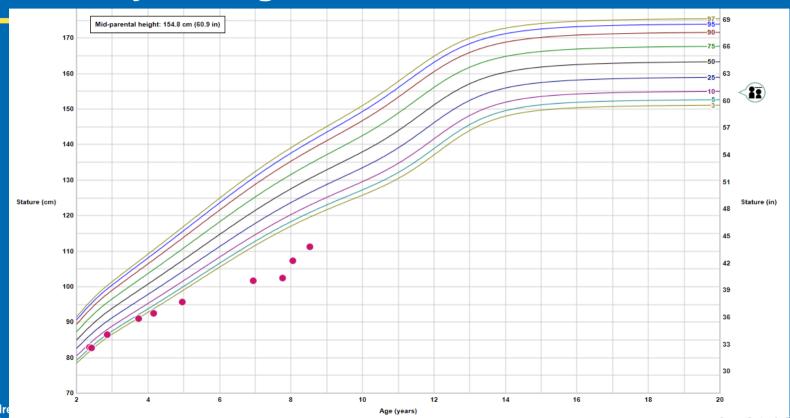
- ✓BMI z score less than -3
- ✓ Percent of ideal body weight calculation based on BMI at 59th
 percentile was 67%

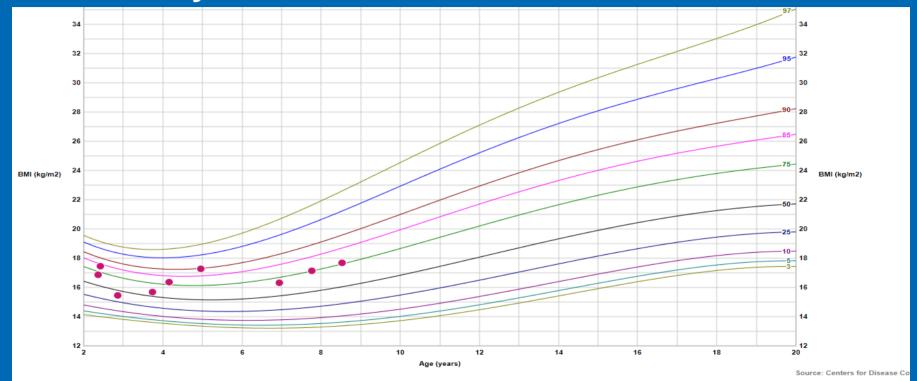
Final Assessment: Severe Malnutrition



Case Study 5

8 Years old referred for growth concerns


Case Study 5: Weight



Source: Centers for

Case Study 5: Height

Case Study 4: BMI

© Children's Hospital Colorado 2021 All rights reserved.

Case Study 5: Nutrition Status Assessment

- Is this child malnourished? Why yes and why not?
- •What do you think about this child linear growth?
- •Final assessment:

No malnutrition

Short stature and severe decrease in linear growth velocity

Linear growth less than 2 inches per year in a prepubertal child is abnormal

Clinical evaluation and management

- Overview: Clinical approach to malnutrition
 - Infants
 - Older Children

- Diagnostic evaluation
 Discussion of common GI etiologies
- Revisit Cases

Mechanisms leading to growth faltering (malnutrition)

- Inadequate energy (caloric) intake
 - most common
 - "Organic" versus "Nonorganic"
 - "Inadequate supply" versus "Inadequate consumption"

Child Abuse & Neglect, Vol. 13, pp. 235-248, 1989 Printed in the U.S.A. All rights reserved. 0145-2134/89 \$3.00 + .00 Copyright © 1989 Pergamon Press plc

NONORGANIC FAILURE TO THRIVE: AN OUTPATIENT APPROACH

BARTON D. SCHMITT, M.D. AND ROBERT D. MAURO, M.D.

Department of Pediatrics, University of Colorado School of Medicine, Denver

- Inadequate energy (caloric) intake
 - most common
 - "Organic" versus "Nonorganic"
 - "Inadequate supply" versus "Inadequate consumption"

Potential factors leading to inadequate supply:

- Improper formula mixing
- Social determinants of health → Food insecurity
- ? Formula shortages
- Neglect

- Inadequate energy (caloric) intake
 - most common
 - "Organic" versus "Nonorganic"
 - "Inadequate supply" versus "Inadequate consumption"
- Malabsorptive

Inadequate energy (caloric) intake

most common

"Organic" versus "Nonorganic"

"Inadequate supply" versus "Inadequate consumption"

Malabsorptive

Potential etiologies (GI)

- Maldigestion: Pancreatic insufficiency
 - Cystic Fibrosis
 - Other (rare): Schwachman Diamond Syndrome
- Malabsorption
 - Celiac disease
 - Other mucosal inflammatory:
 - Allergic/eosinophilic, IBD
 - Infectious: giardia
 - Cholestatic

- Inadequate energy (caloric) intake
 - most common
 - "Organic" versus "Nonorganic"
 - "Inadequate supply" versus "Inadequate consumption"
- Malabsorptive
- Increased energy expenditure
- Abnormal energy utilization

- Inadequate energy (caloric) intalemost common
 "Organic" versus "Nonorganic"
 "Inadequate supply" versus "Inadequate
- Malabsorptive
- Increased energy expenditure
- Abnormal energy utilization

Potential etiologies:

- Increased metabolic demand:
 - Cardiopulmonary disease
 - Inflammatory
 - Malignancy
- Defective energy utilization
 - Genetic
 - Inborn errors of metabolism
 - Often multifactorial

Diagnostic Evaluation: History and Physical Exam

- Feeding history
 - Formula mixing
 - Food insecurity
- Red flags in recurrent infant vomiting:
 - Projectile, bilious, lethargy, diarrhea, fevers
- Developmental assessment
- Family history (atopy, genetic/metabolic disorders, etc)
- When possible, observation of feeding
- Exam: Nutritional status / micronutrient deficiencies
 - Etiology

Staged Intervention for Malnutrition

- Increase calories
- Change infant formula
- Structured meal times
- Limit juice
- Limit grazing
- Multivitamin supplementation
- Follow up
- When necessary:
 - Further diagnostic evaluations (history / exam dependent)
 - Consider admission
- hildren's Hospital Colorado Consider supplemental feeds

Diagnostic Evaluation: Secondary evaluations

Laboratory evaluations:

General:

- CBC, CMP, UA

Child with wheat / gluten exposure and no other explanation for symptoms:

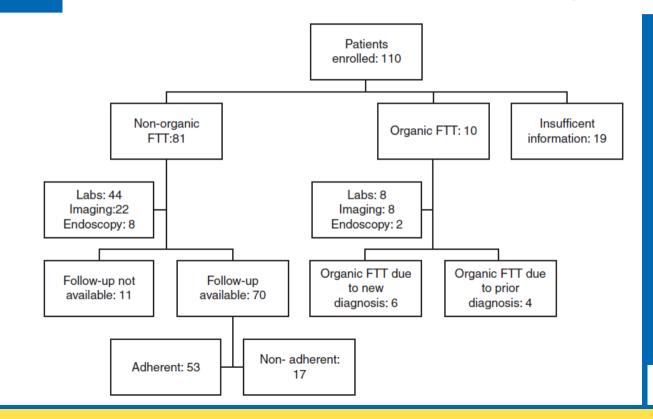
celiac ab testing

Concern for malabsorption?

- Fecal fat (spot check), occult blood
- Consider Giardia
- Consider Fecal Calprotectin

Short stature?

Diagnostic Evaluation: Secondary evaluations


- Feeding concerns?
 Referral to feeding therapy (and/or fluoroscopic swallow study)
 - Infant with poor feeding
 - Toddler/older child with selective eating

- Prominent Upper Gastrointestinal symptoms? vomiting, dysphagia
 - Consider Upper GI series
 - Referral to GI

Failure to Thrive: A Prospective Study in a Pediatric Gastroenterology Clinic

*†Catherine M. Larson-Nath and †Praveen S. Goday

Failure to Thrive: A Prospective Study in a Pediatric Gastroenterology Clinic

*†Catherine M. Larson-Nath and †Praveen S. Goday

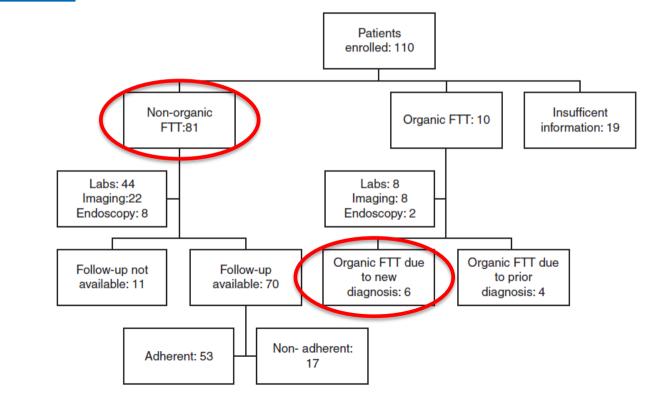
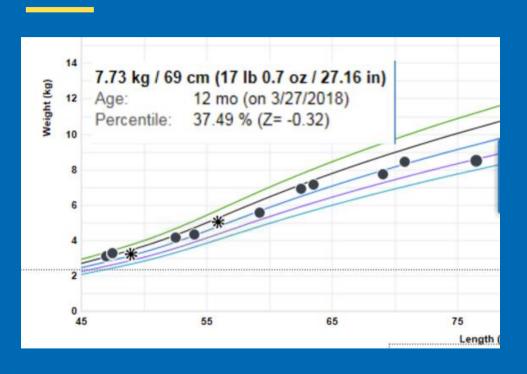


TABLE 3. Frequency of evaluation and results

	Patients with test (%)*			Dations with some that
	All patients	Organic (n = 10)	Nonorganic (n=81)	Patients with tests that aids in diagnosis (%)
Total	73 (66.3)	10 (100)	53 (65.4)	5 (6.8)
Laboratory	62 (56.4)	8 (80)	44 (54.3)	2 (3.2)
Complete blood count	48 (43.6)	5 (50)	35 (43.2)	0 (0)
Basic metabolic panel [†]	48 (43.6)	6 (60)	34 (42)	0 (0)
Albumin	43 (39)	3 (30)	27 (33.3)	0 (0)
Thyroid function tests	27 (24.5)	3 (30)	20 (24.7)	0 (0)
Celiac screening	23 (20.9)	1 (10)	18 (22.2)	0 (0)
Genetic testing	7 (6.4)	2 (20)	5 (6.2)	2 (29)
Sweat test	4 (3.6)	2 (20)	2 (2.5)	0 (0)
Imaging	32 (29.6)	8 (80)	22 (27.2)	1 (3.1)
Echocardiogram	5 (5)	1 (1)	4 (4.9)	0 (0)
Chest x-ray	11 (10)	3 (30)	8 (9.9)	0 (0)
Upper gastrointestinal fluoroscopy	15 (15)	5 (50)	9 (11.1)	0 (0)
Cranial imaging	9 (8)	1 (10)	7 (8.6)	1 (11)
Endoscopy	12 (10.9)	2 (20)	8 (9.9)	2 (16.7)
Upper endoscopy	12 (10.9)	2 (2)	8 (9.9)	2 (16.7)
Colonoscopy	2 (1.8)	0 (0)	2 (2.5)	0 (0)

Hospitalization for Failure to Thrive: A Prospective Descriptive Report

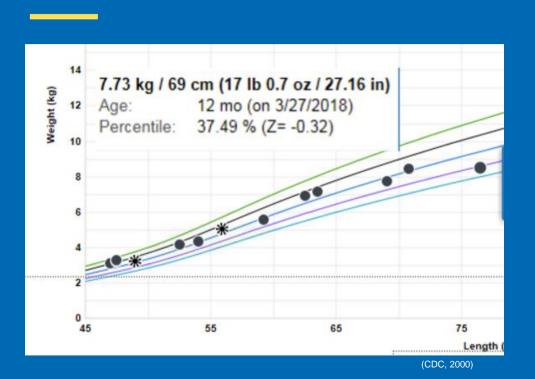
Clinical Pediatrics
2018, Vol. 57(2) 212–219
© The Author(s) 2017
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0009922817698803
journals.sagepub.com/home/cpj


\$SAGE

Catherine Larson-Nath, MD¹, Nicole St Clair, MD¹, and Praveen Goday, MBBS¹

92 children enrolled (124 admissions)
Mean age 0.28 years
14/92 patients: "new dx" discovered during admission/evaluations
Majority of evaluations (imaging, labs, endoscopy): normal
68%: "nonorganic" FTT

Case 1: 18 month old with mild malnutrition


History and physical exam: Grazes, large milk intake No atopy No dysphagia No diarrhea/malabsorption Aunt: celiac disease

Eval:
Normal exam
NEXT STEPS?

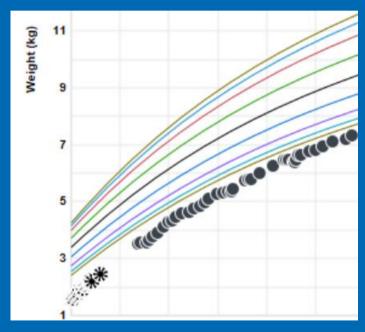
Management: NEXT STEPS?

Case 1: 18 month old with mild malnutrition

History and physical exam: Grazes, large milk intake No atopy No dysphagia No diarrhea/malabsorption Aunt: celiac disease

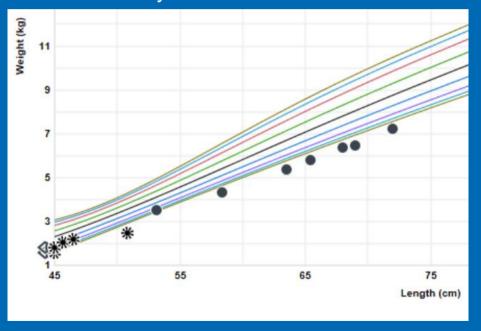
Eval:
Normal exam
labs, including celiac ab
negative

Management: Conservative Increase caloric intake Improves


Celiac Disease (in one slide)

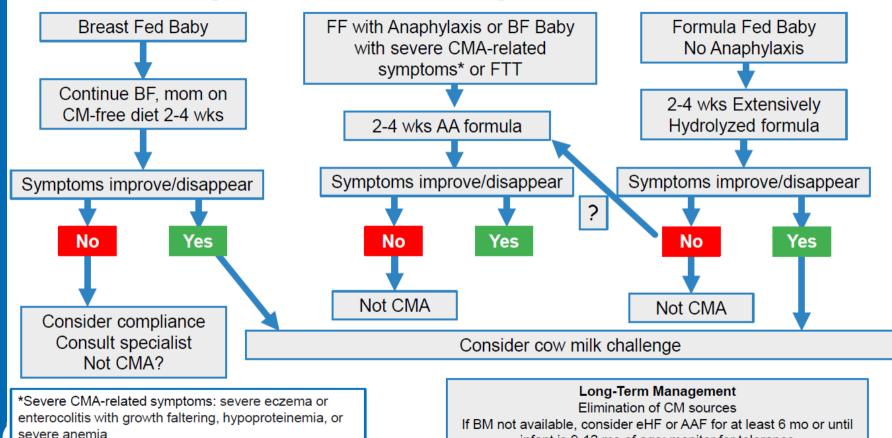
- Incidence as high as 3.1% of children in Colorado
- Presentation: varied, from classic GI symptoms, non-GI symptoms, to asymptomatic
- Who to screen:
 - **Symptomatic**
 - At risk:
 - Autoimmune/Immunologic risk: T1D, Thyroid, Arthritis, AIH, IgA deficiency
 - Genetic: Turners, Trisomy 21, Williams
 - Inherited: first degree family member celiac
- How to screen:
 - TTG IgA and total IgA
- Biopsy confirmation: still recommended, should be discussed

Case 2: Fussy infant with Poor feeding


- 2 month old, former term IUGR, first child for this family
- Frequent Spitting up / Vomiting
- Pain behavior with feeds
- Breast fed, formula supplementation
- On acid suppression
- Physical exam: normal

Case 2: Fussy infant with Poor feeding

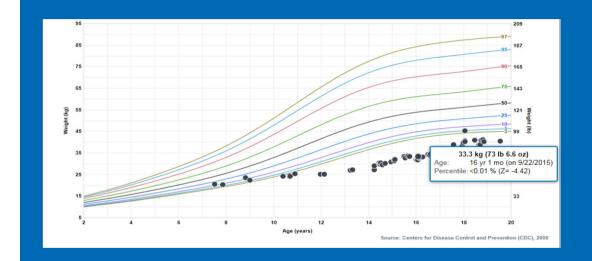
- 2 month old, former term IUGR, first child for this family
- Frequent Spitting up / Vomiting
- Pain behavior with feeds
- Breast fed, formula supplementation
- On acid suppression
- Physical exam: normal



Case 2: Diagnostic Considerations

- GERD? = Aspiration ? = Milk protein intolerance?
- Interventions:
 - Maternal dairy restriction, Change in formula Limited trial of acid suppression
- Diagnostic evaluations:
 - **UGI** series
 - **Swallow Study**
 - Endoscopy
- Case outcome

Algorithm for Management of CMA

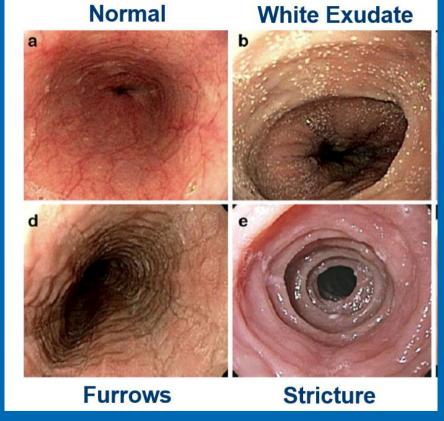

infant is 9-12 mo of age; monitor for tolerance

Vandenplas et al. Acta Pediatrica 2015

Case 3: Adolescent with severe malnutrition

16 year old male:

- Atopic history
- Anxiety
- No family h/o autoimmunity
- Questions:
 - ? Dysphagia
 - ? Nausea / early satiety
 - ? IBD symptoms
 - ? Psych / ED history
- Exam:
 - Malnourished
 - Not localized



Case 3: Evaluation

History suggests dysphagia / food sticking
 Upper GI series: no stricture
 Refer to GI
 Endoscopy → EoE

Eosinophilic Esophagitis (in one slide)

- Increasing prevalence
- Most patients have additional atopic disorder
- Symptoms:

<u>Younger children</u>: food refusal, feeding difficulties, gagging, vomiting, regurgitation, abdominal pain, food impaction

Older children: chest pain, food impaction, regurgitation, dysphagia

Diagnosis:

Endoscopy/biopsy: > 15 eo/HPF

Multidisciplinary

Medical: Swallowed topical corticosteroids

Nutrition: Elimination diet

Feeding therapy

Case 3: Alternative history/outcome

- History: no dysphagia. Predominant nausea. No overt intentional caloric restriction.
- Exam: malnourished, otherwise normal
- Lab evaluations:
 - CBC, Thyroid, ESR, CMP, UA, Celiac: Normal
- Diagnosis / next steps?
 - Functional GI disorder with malnutrition
 - Low yield of abnormal endoscopy or additional evaluations
- Treatment:
 - Pharmacologic: cyproheptadine
 - **Psychology**
 - **Nutrition**
- ? ARFID

Conclusions

- We recommend using precise criteria when defining pediatric malnutrition
- Conservative interventions to restore weight may be of higher yield than testing, unless history and physical exam lead you to consider certain diagnoses
- Referral to either Clinical Nutrition or Pediatric Gastroenterology may be helpful for refractory or concerning patients

References

Becker, Patricia J. et al "Consensus Statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: Indicators Recommended for the Identification and Documentation of Pediatric Malnutrition (Undernutrition)." Journal of the Academy of Nutrition and Dietetics 114.12 (2014): 1988-2000.

Center for Disease Control. (2009). WHO child growth standards.

Grellety, E., & Golden, M. H. (2018). Severely malnourished children with a low weight-for-height have a higher mortality than those with a low mid-upper-arm-circumference: I. Empirical data demonstrates Simpson's paradox. Nutrition Journal, 17(1). doi: 10.1186/s12937-018-0384-4

Larson-Nath, C. & Goday, P. (2016). Failure to thrive: a prospective study in a pediatric gastroenterology clinic. JPGN. 62(62).

Larson-Nath, C. et al. (2018). Hospitalization for failure to thrive: a prospective description report. Clinical Pediatrics. 57(2). 212-219.

Mccarthy, A. et al (2019). Prevalence of Malnutrition in Pediatric Hospitals in Developed and In-Transition Countries: The Impact of Hospital Practices. Nutrients, 11(2), 236. doi: 10.3390/nu11020236

Mehta, Nilesh M. et al "Defining Pediatric Malnutrition." Journal of Parenteral and Enteral Nutrition 37.4 (2013): 460-81

Stephens, K. et al(2019). Examining Mid-Upper Arm Circumference Malnutrition z-Score Thresholds. Nutrition in Clinical Practice. doi: 10.1002/ncp.10324

Olson IE, et al. (2015), 135(3) BMI; Olson IE, et al. Pediatrics 2010, 125(2) Length, Weight

Schwinger, C. et al (2019). Severe acute malnutrition and mortality in children in the community: Comparison of indicators in a multi-country pooled analysis. Plos One, 14(8). doi: 10.1371/journal.pone.0219745

Thank You

