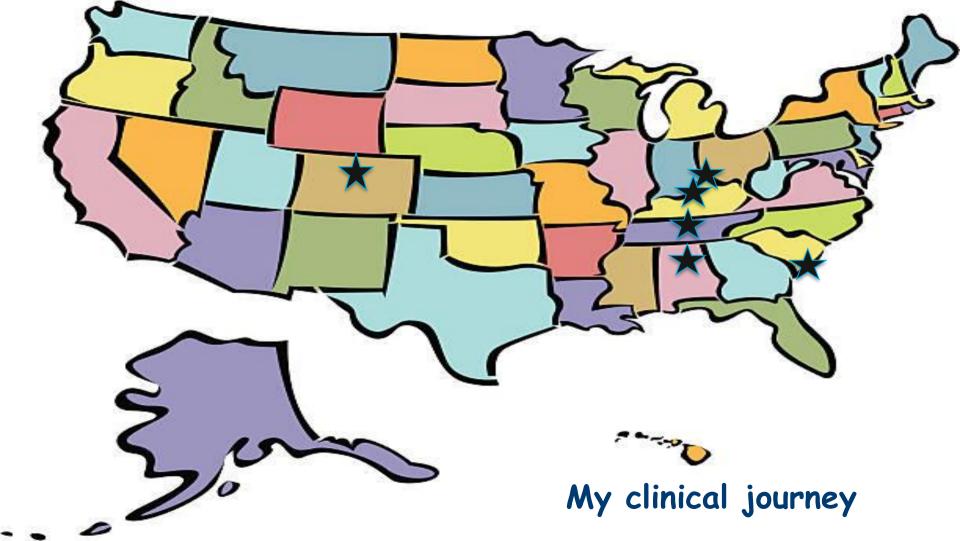
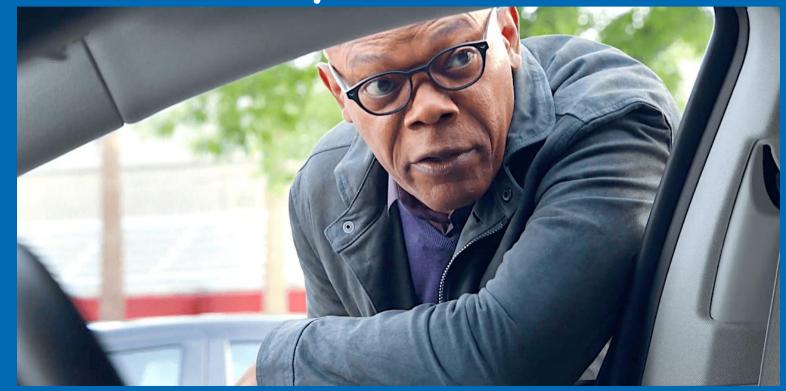
Emergency Department Case Studies

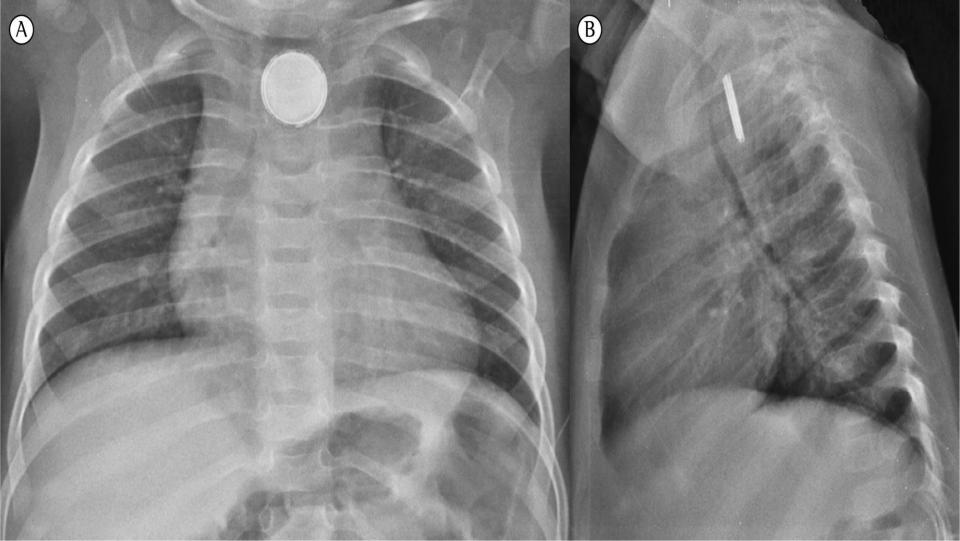
Timothy Givens, MD

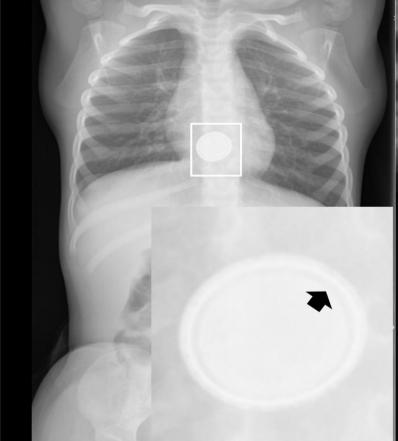



Disclosures

I have no relevant financial relationships with any commercial interests or conflicts to disclose.

Timothy Givens, MD


What's in your environment?


Case: 2 year old ingestion

- 2 yo M choked on something 20—30 minutes ago
- Now drooling, won't eat or drink
- Mom saw him playing on the floor but didn't see what he put into his mouth
- Vital signs normal, looks uncomfortable
- Lungs clear
- Patient drooling
- Nothing visible on inspection of mouth
- What to do???

Button Battery - Radiography

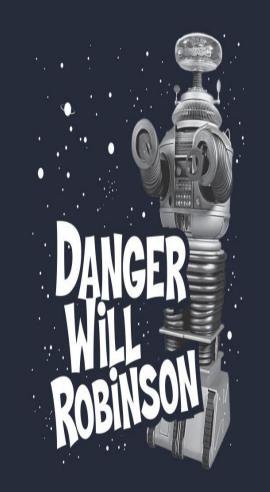
Advantages of lithium

- Lightest metal on the periodic table
- Higher voltage: 3 volts vs. 1.5 volts in alkali batteries
- Wide range of operating temperature
- Long shelf life
- Non-corrosive

Alkaline – 11mm

Lithium – 20mm

Common items button batteries are found in



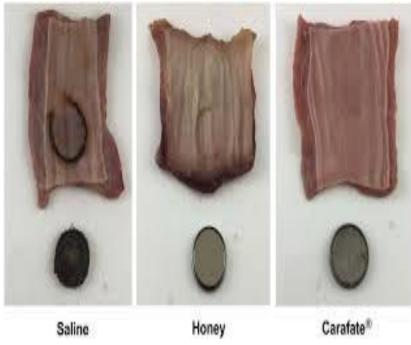
other novelty items

Button batteries—real danger!

- Esophageal button batteries are a TRUE EMERGENCY!!!
- Cause injury in as little as 2 hours, perforation in as little as 6 hours
- Mechanisms of injury include:
- Caustic leakage \rightarrow liquefaction necrosis
- Pressure necrosis
- Completion of an electrical circuit → current injury
- Brumbaugh D, et al, JPGN 2011; 52(5):585-589.

High pH leads to Cell Death and Tissue Injury

30 seconds



2 minutes

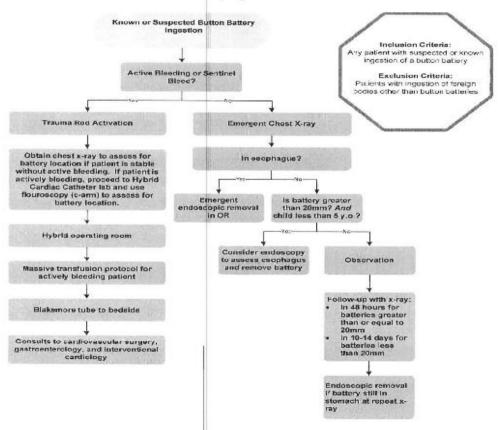
Lithium battery with drops of saline

Triage and treatment

- 1. Suspect the diagnosis!!!
 - 1. Symptoms: acute airway obstruction, drooling, wheezing, vomiting, chest pain, refusal to eat, coughing/choking/gagging
 - 2. Presumed "coin" or other FB ingestion
- 2. Do not induce vomiting; NPO except ...
- 3. Administer HONEY immediately and en route to ED if:
 - 1. 12 months or older
 - 2. Incident occurred within past 12 hours
 - 3. Child able to swallow
 - 4. Dose: 10 mL every 10 minutes for up to 6 doses
 - 5. Use commercial honey if available (not specialized/artisanal)
- 4. Transport immediately—honey slows but does not stop battery injury and is no substitute for removal

CHCO (updated) transport protocol

- Transport via CCT helicopter
- If CCT helicopter unavailable, nearest CCT ground or ALS ambulance
- Teams will bring trauma blood & dose Carafate q10min (10 mL/dose)



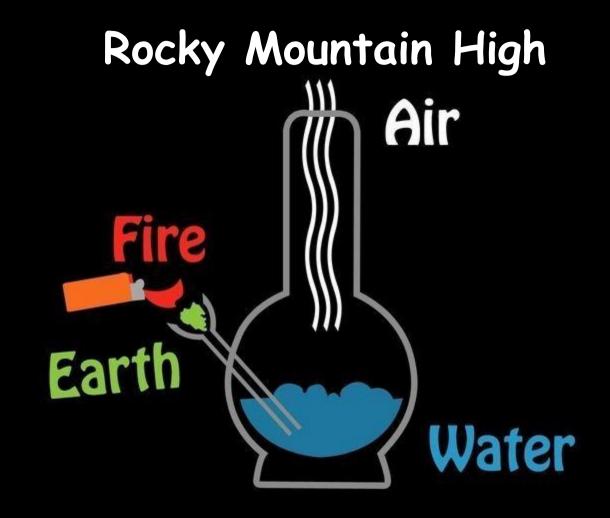
CHCO hospital ED management

INGESTED BUTTON BATTERY

ALGORITHM Treatment of Button Battery ingestion

Children's Hosnital Colorado

What's in your environment?



The Four Elements

Case: child struck by lightning

- 10 yo M helping dad on the farm when thunderstorm began
- Was holding metal rake when struck by lightning bolt and thrown 4-5 feet
- Initally brief LOC; now awake but dizzy and confused
- EMS summoned
- Patient tachycardic but VS otherwise normal
- ECG: sinus tachycardia

Lightning facts

- Lightning strikes earth > 100 times/second
- Estimated 150-300 deaths/year in USA
 - Used to affect outdoor workers; now, larger % are hikers, campers, golfers, etc.
 - Most occur in daytime, in summer
 - Prevalent in high mountainous areas, around large bodies of water
 - Greatest proportionate fatality: CO, WY, MT

Lightning myths

- Lightning strikes are invariably fatal
 - 30% mortality
 - Generally only those with immediate CP arrest expire
- Lightning victim is "electrified"
 - Belief delays resuscitation efforts
- Lightning never strikes in the same place twice

Mechanisms of lightning injury

High voltage
Secondary heat production
Explosive force

Primary injury mechanisms

- Direct hit
 - Usually in the open (no shelter)
 - Carrying a conductor (metal)
- Splash
 - Tree/building hit, splashes onto nearby victim
 - Path of least resistance
- Contact—holding object which is struck
- Step voltage
 - Hits ground near victim, spreads in wave through victim's feet
- Blunt trauma—thrown by explosive forces

Lightning injuries

- Minor
 - Confusion, amnesia, temporary LOC, blindness/deafness
 - Paresthesias, muscle pain
 - Transient hypertension
- Moderate
 - CNS changes (disoriented, comatose), seizures, motor paralysis
 - Loss of pulses due to arterial spasm
 - Burns
 - Tympanic membrane rupture
- Severe
 - Cardiac arrest (Vfib or asystole)
 - Direct brain damage

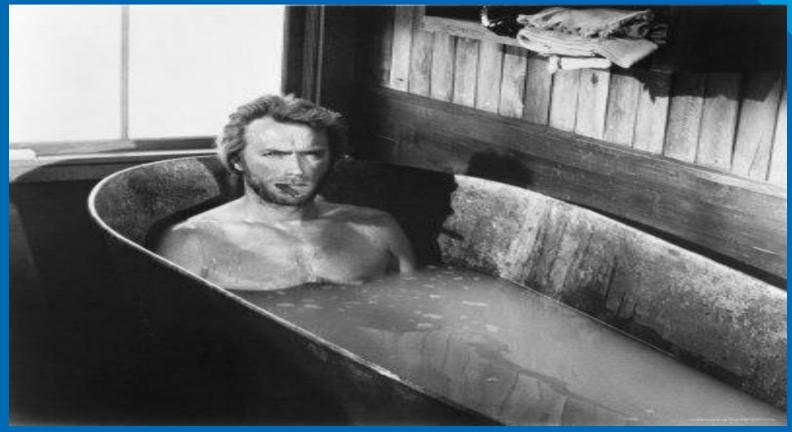
High-voltage electricity vs. lightning injuries

- Lightning contact with body is instantaneous, leads to flashover (over the body rather than through it)
 - Seldom burns of any magnitude
- High-voltage electricity exposure more prolonged, victim freezes to the circuit
 - Energy through tissues with little resistance to flow: massive internal thermal injury, myoglobin release, renal failure, compartment syndrome (fasciotomy?)

Care of lightning victims

- ABC's
 - "Prolonged" CPR unnecessary
- Spinal precautions
- IVF/02
- Splint fractures
- Transport

WHEN LIGHTNING STRIKES


Case: young child found in lake

- 5 yo F wandered away from family campsite while they were cooking dinner
- 5 minutes later, found face down in water at edge of lake
- Father pulled her out of water, gave rescue breaths
- Child vomited some water, sputtered, had some labored breathing
- Family drove to nearest hospital 40 minutes away
- On arrival, patient awake, tachypneic with oxygen sats 88%

Submersion incidents

Yeah, I pretty much never sit by the pool anymore -Marco Polo

Submersion statistics

- > 1000 deaths/year in 1-19 yo age group
- Males predominate
 - 4x as likely as females
- Intoxicants (EtOH) frequently involved
 - 30-50% of adolescent drownings
- Ability to swim not consistently related to death rates
- Estimated total lifetime costs > \$ 2.6 B for 0-14 yo

Submersion survival

- Medical care for severe submersion episodes → little effect on improving survival
- "Survival" does not equal intact neurologic function
- ??Better decision-making in prehospital arena
- Children swimming less in natural bodies of water, more at pools & beaches with lifeguards → better access to early CPR
- Submersion duration best predictor of outcome
 - No protective effect of cold H_2O

- Recent decline in pediatric mortality , hospitalization rates with submersion incidents
 - Particularly in South and West USA
 - Likely due to targeted prevention efforts

Bath time supervision

Four-sided pool fencing

Use of personal flotation devices

Swimming in supervised areas

Swimming lessons

Submersion injury pathophysiology

- Panic & struggling
- Breath-holding
- Voluntary suppression of respiration is overcome
 - 15% laryngospasm ("dry drowning")
 - 85% aspirate liquid ("wet drowning")
- Common denominator is hypoxia
- LOC \rightarrow airway reflexes lost \rightarrow CP arrest

Associated hypothermia

Cold water submersion - better prognosis???

- (especially pediatric patients)
- Obtain core temperature, resuscitate until temp WNL

Other considerations

- Possible medical emergency could have preceded submersion incident
 - Trauma (head/neck)
 - Seizure
 - Dysrhythmia
 - Toxic ingestion
 - NAT

Submersion treatment--prehospital

- Assume spinal injury
 - Immobilization
 - Maintain precautions during transport
- Rescue breathing & supplemental oxygen
- ?CPR—start on almost all patients
- Begin rewarming

Q. Should all victims of submersion incidents be evaluated in an emergency department?

- A. Any patient with residual symptoms should be transported to an ED for observation for progressive respiratory insufficiency for 4-6 hours
 - Coughing
 - Wheezing
 - Tachypnea
 - Low oxygen saturation
 - EVEN IF AWAKE & COGNIZANT!

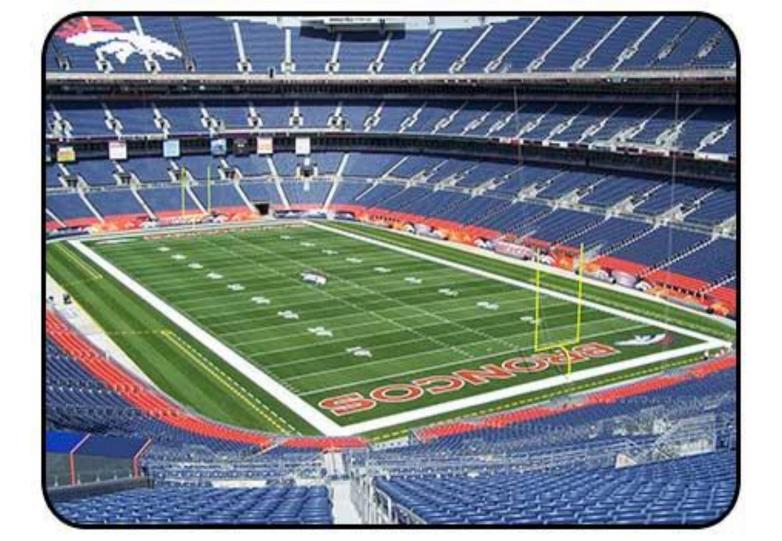
Submersion treatment--ED

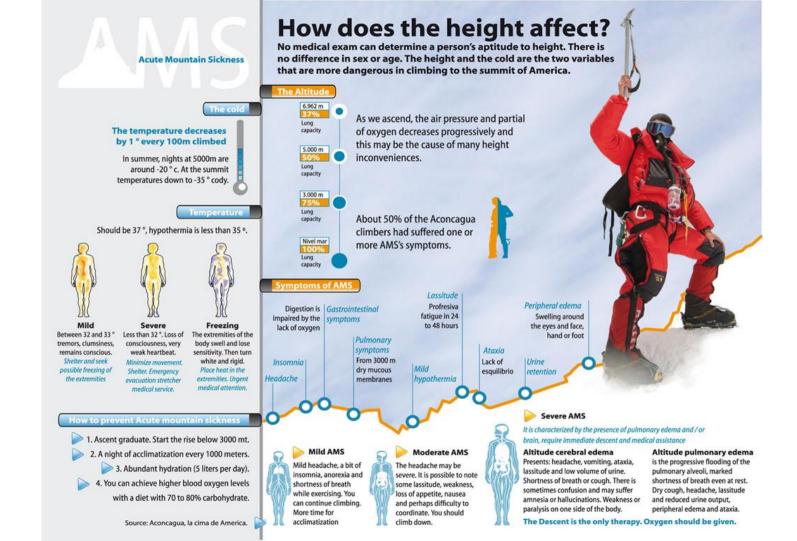
- Unless obviously dead, assume survivability
 - Especially children
- Intubate if unable to oxygenate/ventilate
 - PEEP improves ventilation and volume
 - Shifts fluid into capillaries
- ACLS algorithms if indicated
- Rewarm patient per hypothermia protocols

Who gets admitted?

- CNS compromise
- Respiratory compromise
- Any symptoms after observation
- Abnormal vital signs

 If normal RA oxygen saturation, normal lung exam, GCS > 13 may be safely discharged home





break

- 19 yo collegiate M flew from Houston to Denver 3 days ago
- He & friends drove immediately to mountains for ski trip
- Has been skiing hard and partying harder for 3 days
- This morning, awakened with difficulty getting breath
- Speaks only in short sentences, is tachypneic to 30's
- Mountain clinic documented oxygen sats of 85%

Altitude definitions:

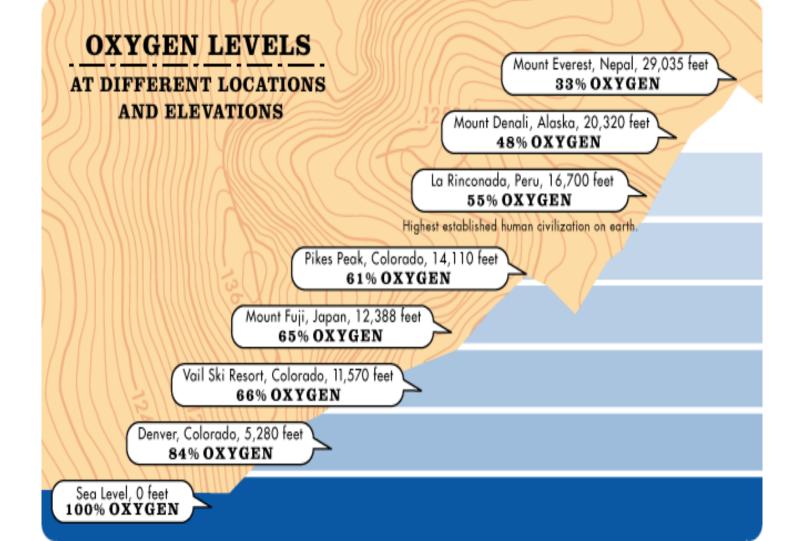
- Moderate: 8-10,000 feet
- High: 10-18,000 feet
- Extreme high: > 18,000 feet

High altitude sickness

- Can occur at altitude > 5,000 feet
- Influenced by:
 - Rate of ascent
 - Final altitude
 - Duration at altitude
 - Sleeping altitude

WHAT IT'S LIKE BEING HIGH IN PUBLIC

Who is at risk?


- Hard to predict
- Those at greater risk include:
 - Younger > older
 - Male > female
 - History of previous altitude sickness
 - Can occur in previously unaffected
 - Overexertion
 - Alcohol, sedatives, smoking
 - State of physical fitness NOT protective

Physiology

- Hypoxia due to
 ↓ barometric pressure
- Hypoxemia due to $\downarrow pO_2$ of inspired air
- Impact on the cell variable
 - Ability to acclimatize/compensate
 - Pre-existing medical conditions

Acclimatization

- Ventilation—increases almost immediately
- Cardiovascular
 - Increased cardiac output (CO)
 - Increased pulmonary perfusion
 - Increases V/Q mismatch
- Increase in cerebral blood flow
- Hematologic
 - Relative increase in hemoglobin (diuresis)
 - Erythropoietin—stimulates bone marrow $\rightarrow \uparrow$ RBC production
 - Effect takes weeks

Beware—some people acclimatize better than others!!

Types of illness

- Altitude-exacerbated conditions
 - NOT the focus of this talk, but be aware!
 - Congenital heart disease
 - Pulmonary hypertension
 - Coronary artery disease
 - Congestive heart failure
 - Sickle cell disease/trait
 - Obstructive sleep apnea
 - Pregnancy

High altitude illnesses

- Acute mountain sickness
- High-altitude cerebral edema (HACE)
- High-altitude pulmonary edema (HAPE)

Acute Mountain Sickness

- Defined as headache, plus one or more of:
 - Anorexia
 - Nausea/vomiting
 - Dizziness
 - Fatigue/weakness
 - Difficulty sleeping
 - Lightheadedness
- Typically 6-10 hours after ascent
- Usually self-limiting

Acute Mountain Sickness--Treatment

- Rarely need to descend—slow/halt ascent
- Analgesics/antiemetics prn
- Consider acetazolamide 125-250 mg BID
 - Speeds acclimatization
- Descend if symptoms do not improve
 - Dexamethasone 4 mg po/IM if unable to descend
- Graded ascent is best preventive measure (600 m/day)

High Altitude Cerebral Edema (HACE)

- AMS symptoms progress \rightarrow global cerebellar dysfunction
 - Ataxia or altered mental status
 - Vertigo, diplopia, (rarely) seizures
- Usually > 12,000 feet (has occurred at > 9,000 feet)
- Begins > 12 hours after onset of AMS
- Symptoms typically global
 - Isolated focal seizures \rightarrow think CVA/TIA

HACE--Treatment

- Immediate descent = definitive treatment
- Supplemental oxygen @ highest flow \rightarrow sats > 90%
- Dexamethasone 8 mg po/IM, then 4 mg q6hrs
- If cannot descend, hyperbaric therapy

High Altitude Pulmonary Edema (HAPE)

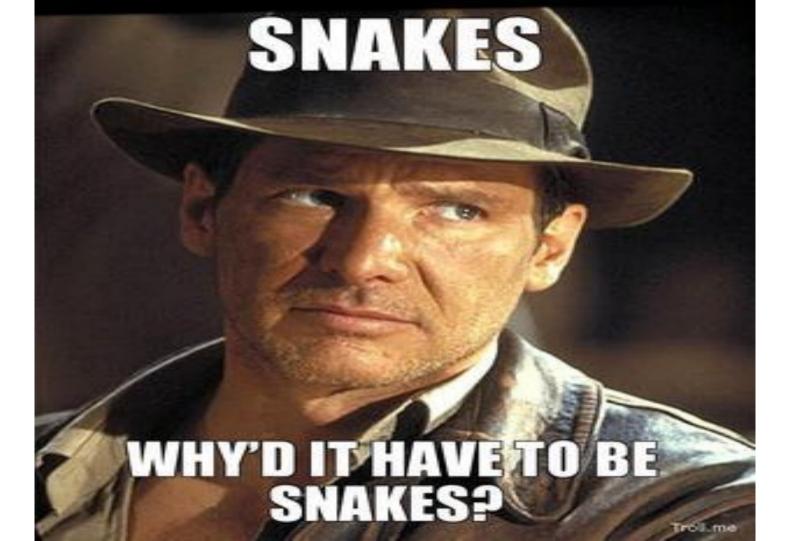
- Non-cardiogenic pulmonary edema
- Accounts for most high-altitude deaths
- Occurs 1-3 days after arrival at altitude
 - Rarely occurs after 4 days—consider alternative diagnosis
- 1-2% of high-altitude climbers
 - 15% of those with rapid ascent

HAPE Pathophysiology

- Hypoxia leads to pulmonary artery hypertension
 - Increased pulmonary vascular resistance
 - However, occurs in everyone, not just HAPE
- Pulmonary capillary pressure increases
 - Leads to over-perfusion, capillary leakage
 - Fluid as well as proteins leak out \rightarrow exudative fluid
- With descent, pressure decreases
- Inflammatory mediators likely not primary process, but secondary to leaked proteins

HAPE Treatment

- Immediate descent
- Supplemental oxygen
 - Decreases pulmonary artery pressure up to 50%
- Beta-agonists
 - Increase fluid clearance from alveolar spaces
- No role for dexamthasone



Case: snakebit

- 16 yo M hiking with buddies
- Came across rattlesnake on trail
- Tried to fend it off with a stick
- Snake bit patient on forearm approx. 2 hours ago
- Now, with pain, swelling, discoloration of forearm spreading from bite site
- Tachycardic, tachypneic, dizzy and sweaty

Snakebite stats

- Global
 - > 2 million annually
 - 20,000- 94,000 deaths
- USA
 - 6-8,000 snakebite envenomations/year
 - 5-6 deaths/year (kids, elderly, delayed care)
 - 99% Crotalidae (pit vipers)
 - 5 subspecies of copperheads
 - 3 subspecies of cottonmouths
 - > 60 subspecies of rattlesnakes

The typical bite victim

- Definitely male
- Under 30 years old
- Mostly warm months
- Bitten on extremity
- Alcohol involved
- Stupidity: attempt to handle, harm, or kill a snake
- Senseless risks

Snake venom

- Pit vipers' (Crotalidae) venom contains zinc-dependent metalloproteinases
 - Direct capillary damage \rightarrow hemorrhage & fluid extravasation
 - Tissue necrosis
 - Hemotxicity: consumptive coagulopathy \rightarrow DIC
- Coral snakes' (Elapidae) venom contains alpha neurotoxins
 - Direct neurotoxicity

Autonomic "terror" reactions must be differentiated from envenomation effects.

Envenomation effects

- Majority: painful swelling at injury site; conservative management
- Smaller % significant morbidity: consumptive coagulopathy, renal failure, hypovolemic shock, anaphylaxis
- Children at higher risk: smaller size, higher concentration of venom

Manifestations of pit viper envenomation

- Fang marks
- 30-60 minutes: pain, edema, erythema, ecchymosis at or around bite site
- Early systemic: nausea/vomiting, perioral paresthesia, fingers/toes tingling, lethargy, weakness, myokymia
- Rubbery, minty, or metallic taste
- Systemic: hypotension, tachypnea, tachycardia, altered sensorium

Snakebite treatment: in the field

- Move victim beyond striking distance
- Place victim at rest
- Keep victim warm
- Transport immediately to nearest emergency medical facility
- Remove constrictive clothing, jewelry
- No stimulants

What NOT to do

- Tourniquets
- Incision and suction
- Cryotherapy (ice)
- Electric shock therapy

• IF a tourniquet has been placed as first aid, leave in place until hospital evaluation/initiation of antivenom Rx

Snakebite treatment in ED

- Supportive care with IV fluids
- Screening labs for coagulopathy (draw from unaffected limb)
- Observe affected limb with leading edge of edema demarcated and time q30"
- Prophylactic antibiotics discouraged

Use of antivenom

- Not well-defined
 - Moderate or increased swelling (progression)
 - Lab evidence of coagulopathy
 - Systemic signs
 - All coral snake bites (due to risk of respiratory muscle paralysis)

Cro-Fab

- First approved in 2000
- Ovine (sheep) Fab₂ fragment
- Made from venom of 4 snakes
 - Eastern diamondback rattlesnake
 - Western diamondback rattlesnake
 - Mojave rattlesnake
 - Cottonmouth (Water moccasin)
- Preferred therapy for envenomation

Cro-Fab

- Dose: 4-6 vials IV load (diluted in NS) initially; can reload if progression
 - Not "per kg" dosing—clinical effects due to venom dose, not patient weight
- 2 vials q6-8hours maintenance dose
- Stops progression; does not resolve symptoms (takes days to weeks)
- Adjunctive analgesia required
- 14.3% reaction rate (urticaria mostly; serum sickness possible for 1-3 weeks)

AnaVip

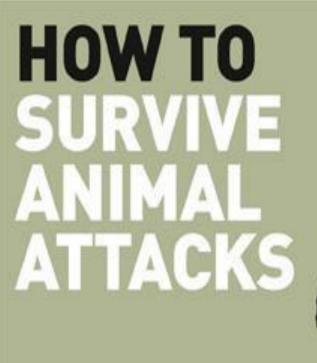
- First approved in 2018
- Equine (horse) F(ab')2 fragment
- Longer elimination half-life than Crofab
- Theoretically, requires less vials of antivenom dosing
- Dose: 10 vials loading dose IV
- Cost: Crofab \$3400/vial; Anavip \$1200/vial wholesale
- Early trials indicate more vials Anavip used vs. Crofab
- Late coagulopathy complications due to longer half-life

Disposition

- Observe all patients with pit viper bites in ED for minimum 8-12 hours
 - If no clinical or lab manifestations during this time, may discharge
- If treated with antivenom, should be admitted and monitored in an ICU

Case: hiker between mother å baby

- 7 yo F hiking with mother & siblings in Breckenridge
- Got off the path and wandered between mother moose and her calf
- Mother moose charged patient, knocked her to ground and stomped on her head
- Patient transported to local hospital
- Awake, crying, GCS 13
- Large scalp lac with underlying crepitus, depression palpable



Wild animal attacks: general

- Tearing, cutting, crushing, penetrating injuries
- Accompanying blunt trauma (falls, large animal forces)
- Local infection, variety of pathogens
- Transmission of systemic disease
- Remote wilderness areas → delay in notification, rescue, definitive care

Best defense is avoidance

- Keep a clean camp
- Treat garbage like you would food
- Never take food into a tent
- Don't sleep in the same clothes you cooked dinner in
- Don't feed wild animals—even deer, squirrels (it attracts the bigger animals)

- Pepper spray
- Club
- Substantial knife
- ?Firearm

How to survive an animal attack

- Know thy enemy's physical weak points
 - Nose/snout
 - Eyes
 - Neck
 - Testicles
 - Inside leg

How to survive an animal attack

- Know thy enemy's psychological weak points
 - Loud noises
 - Scream & yell
 - Aggressive behavior
 - Wave your hands/clothing around
 - Appearance of size

How to survive an animal attack

- If you can't scare the animal off, you have 2 choices:
 - RUN
 - FIGHT
 - Use sharp objects/weapons, if you have them
 - Improvise: grab a big stick or a log
 - Strike at weak points, yell, make erratic movements

Caveat: animals can usually run and fight better than you can

What to do for the attack victim

Field management of attack victim

- First, assure scene safety
 - Rescuer safety
 - Victim safety
 - Will the animal return?
- Things to consider
 - What equipment is available?
 - Is help reasonably close?
 - Can the victim walk?
 - Consider mechanism of injury

Field management of attack victim

- Airway
- Breathing
- Circulation
- Disability
- Exposure
- Wound care: irrigate, debride, dress, splint

Trauma management & wound care

- ATLS principles
- Wound care
 - Explore
 - Cleanse
 - Irrigate
 - Debride
 - To close or not to close?
 - Antibiotic coverage
 - Tetanus prophylaxis

