

Disclosures

I have no relevant financial relationships with any commercial interests or conflicts to disclose.

Timothy Givens, MD

- Case: 2 year old ingestion 2 yo M choked on something 20-30 minutes ago Now drooling, won't eat or drink Mom saw him playing on the floor but didn't see what he put into his mouth Vital since second between first the
- Vital signs normal, looks uncomfortable
- Lungs clear
- Patient drooling
 Nothing visible on inspection of mouth
 What to do???

٢

8

Advantages of lithium

- Lightest metal on the periodic table
 Higher voltage: 3 volts vs. 1.5 volts in alkali batteries
 Wide range of operating temperature
 Long shelf life
 Non-corrosive

11

Button batteries—real danger!

- Esophageal button batteries are a TRUE EMERGENCY!!!
- Cause injury in as little as 2 hours, perforation
- in as little as 6 hours Mechanisms of injury include: Caustic leakage → liquefaction necrosis
- Pressure necrosis Completion of an electrical circuit →
- current injury
- Brumbaugh D, et al, JPGN 2011; 52(5):585-589.

Triage and treatment

- 1. Suspect the diagnosis!!!
 - Symptoms: acute airway obstruction, drooling, wheezing, vomiting, chest pain, refusal to eat, coughing/choking/gagging
 Presumed "coin" or other FB ingestion

PURE

- 2. Do not induce vomiting; NPO except ...
- 3. Administer HONEY immediately and en route to ED if:
 - 1. 12 months or older
 - Incident occurred within past 12 hours
 Child able to swallow

 - 4. Dose: 10 mL every 10 minutes for up to 6 doses
- Use commercial honey if available (not specialized/artisanal)
 Transport immediately—honey slows but does not stop battery injury and is no substitute for removal
- ٢

16

CHCO (updated) transport protocol

- Transport via CCT helicopter
- If CCT helicopter unavailable, nearest CCT ground or ALS ambulance
- Teams will bring trauma blood & dose Carafate q10min (10 mL/dose)

- Case: child struck by lightning
 10 yo M helping dad on the farm when thunderstorm began
 Was holding metal rake when struck by lightning bolt and thrown 4-5 feet
 Initally brief LOC; now awake but dizzy and confused
 EMS summard
- EMS summoned
- Patient tachycardic but VS otherwise normal
- ECG: sinus tachycardia

25

29

Lightning facts

- Lightning strikes earth > 100 times/second
- Estimated 150-300 deaths/year in USA
 Used to affect outdoor workers; now, larger % are hikers, campers, golfers, etc.
 Most occur in daytime, in summer
 Prevalent in high mountainous areas, around large bodies of water
 Greatest proportionate fatality: CO, WY, MT

٢

Lightning myths

- Lightning strikes are invariably fatal
 30% mortality
 Generally only those with immediate CP arrest expire
- Lightning victim is "electrified"
 Belief delays resuscitation efforts
- Lightning never strikes in the same place twice

٢

31

32

Mechanisms of lightning injury

- 1. High voltage
- 2. Secondary heat production
- 3. Explosive force

Primary injury mechanisms

- Direct hit
 - Usually in the open (no shelter)
 Carrying a conductor (metal)
- Splash

 - Tree/building hit, splashes onto nearby victim
 Path of least resistance
- Contact—holding object which is struck
- Step voltage
- Hits ground near victim, spreads in wave through victim's feet
- Blunt trauma—thrown by explosive forces

٢

34

Lightning injuries

• Minor

- Confusion, amnesia, temporary LOC, blindness/deafness Paresthesias, muscle pain
- Transient hypertension
- Moderate
 - CNS changes (disoriented, comatose), seizures, motor paralysis
 - Loss of pulses due to arterial spasm
 - Burns
 - Tympanic membrane rupture
- Severe
 - Cardiac arrest (Vfib or asystole)
 Direct brain damage

٢

35

High-voltage electricity vs. lightning injuries

- Lightning contact with body is instantaneous, leads to flashover (over the body rather than through it) • Seldom burns of any magnitude
- High-voltage electricity exposure more prolonged, victim freezes to the circuit
 - Energy through tissues with little resistance to flow: massive internal thermal injury, myoglobin release, renal failure, compartment syndrome (fasciotomy?)

Care of lightning victims

- ABC's
- "Prolonged" CPR unnecessary
- Spinal precautions
- IVF/O2
- Splint fractures
- Transport

Ŷ

37

Case: young child found in lake

- 5 yo F wandered away from family campsite while they were cooking dinner
- 5 minutes later, found face down in water at edge of lake
- Father pulled her out of water, gave rescue breaths
 Child vomited some water, sputtered, had some labored breathing
- Family drove to nearest hospital 40 minutes away
- On arrival, patient awake, tachypneic with oxygen sats 88%

41

Submersion statistics

- > 1000 deaths/year in 1-19 yo age group
- Males predominate
- 4x as likely as females
 Intoxicants (EtOH) frequently involved
- 30-50% of adolescent drownings
- Ability to swim not consistently related to death rates
 Estimated total lifetime costs > \$ 2.6 B for 0-14 yo
- ٢

Submersion survival

- Medical care for severe submersion episodes → little effect on improving survival
- "Survival" does not equal intact neurologic function
- ??Better decision-making in prehospital arena
- Children swimming less in natural bodies of water, more at pools & beaches with lifeguards → better access to early CPR
- Submersion duration best predictor of outcome
 No protective effect of cold H₂O

43

44

Use of personal flotation devices

50

Submersion injury pathophysiology

- Panic & struggling
 Breath-holding
 Voluntary suppression of respiration is overcome

 15% laryngospasm ("dry drowning")
 85% aspirate liquid ("wet drowning")

 Common denominator is hypoxia
 LOC > sirveys aspleys last > CD except
- LOC \rightarrow airway reflexes lost \rightarrow CP arrest

٢

Associated hypothermia

- Cold water submersion better prognosis??? • (especially pediatric patients)
- Obtain core temperature, resuscitate until temp WNL

٢

52

Other considerations

- Possible medical emergency could have preceded submersion incident
 - Trauma (head/neck)
 Seizure

 - Dysrhythmia
 Toxic ingestion
 NAT

٩

53

Submersion treatment--prehospital

- Assume spinal injury

 - Immobilization
 Maintain precautions during transport
- Rescue breathing & supplemental oxygen
- ?CPR—start on almost all patients
- Begin rewarming

٢

Q. Should all victims of submersion incidents be evaluated in an emergency department?

A. Any patient with residual symptoms should be transported to an ED for observation for progressive respiratory insufficiency for 4-6 hours

- Coughing Wheezing Tachypnea Low oxygen saturation
- EVEN IF AWAKE & COGNIZANT!

٢

55

Submersion treatment--ED

- Unless obviously dead, assume survivability • Especially children
- Intubate if unable to oxygenate/ventilate PEEP improves ventilation and volume
 Shifts fluid into capillaries
- ACLS algorithms if indicated
- Rewarm patient per hypothermia protocols

٢

Who gets admitted?

CNS compromise

- Respiratory compromise
- Any symptoms after observation
- Abnormal vital signs

 If normal RA oxygen saturation, normal lung exam, GCS > 13 may be safely discharged home

3

59

Case: Texas teenager on spring break

- 19 yo collegiate M flew from Houston to Denver 3 days ago
- He & friends drove immediately to mountains for ski trip
- Has been skiing hard and partying harder for 3 days
- This morning, awakened with difficulty getting breath
- Speaks only in short sentences, is tachypneic to 30's
- Mountain clinic documented oxygen sats of 85%

Altitude definitions:

- Moderate: 8-10,000 feet
 High: 10-18,000 feet
 Extreme high: > 18,000 feet

High altitude sickness

- Can occur at altitude > 5,000 feet
- Influenced by:

 - Rate of ascent
 Final altitude
 - Duration at altitude • Sleeping altitude

٢ 64

65

Who is at risk?

- Hard to predict
- Those at greater risk include:
- Younger > older
 Male > female
- History of previous altitude sickness
 Can occur in previously unaffected
- Overexertion
- Alcohol, sedatives, smoking
 State of physical fitness NOT protective

Physiology

- Hypoxia due to \downarrow barometric pressure
- Hypoxemia due to $\downarrow pO_2$ of inspired air
- Impact on the cell variable • Ability to acclimatize/compensate
 - Pre-existing medical conditions

٢ 67

OXYGEN LEVELS Mount Everest, Nepal, 29,035 feet 33% OXYGEN AT DIFFERENT LOCATIONS AND ELEVATIONS Mount Denali, Alaska, 20,320 feet 48% OXYGEN nconada, Peru, 16,700 feet 55% OXYGEN La Rin Pikes Peak, Colorado, 14,110 feet 61% OXYGEN Mount Fuji, Japan, 12,388 feet 65% OXYGEN Vail Ski Resort, Colorado, 11,570 feet 66% OXYGEN Denver, Colorado, 5,280 feet 84% OXYGEN Sea Level, 0 feet 100% OXYGEN

68

Acclimatization

- Ventilation—increases almost immediately
- Cardiovascular

 - Increased cardiac output (CO) Increased pulmonary perfusion Increases V/Q mismatch
- Increase in cerebral blood flow
- Hematologic

 - Relative increase in hemoglobin (diuresis)
 Erythropoietin-stimulates bone marrow → ↑ RBC production
 Effect takes weeks

Beware—some people acclimatize better than others!!

70

High altitude illnesses

- Acute mountain sickness
 High-altitude cerebral edema (HACE)
 High-altitude pulmonary edema (HAPE)

Acute Mountain Sickness

- Defined as headache, plus one or more of:
 - Anorexia
 - Nausea/vomiting
 - Dizziness Fatigue/weakness
 - Difficulty sleeping
 - Lightheadedness
- Typically 6-10 hours after ascent
- Usually self-limiting

٢

73

Acute Mountain Sickness--Treatment

- Rarely need to descend—slow/halt ascent
- Analgesics/antiemetics prn
- Consider acetazolamide 125-250 mg BID • Speeds acclimatization
- Descend if symptoms do not improve • Dexamethasone 4 mg po/IM if unable to descend
- Graded ascent is best preventive measure (600 m/day)

٢

74

High Altitude Cerebral Edema (HACE)

- AMS symptoms progress → global cerebellar dysfunction Ataxia or altered mental status
 Vertigo, diplopia, (rarely) seizures
- Usually > 12,000 feet (has occurred at > 9,000 feet)
- Begins > 12 hours after onset of AMS
- Symptoms typically global Isolated focal seizures → think CVA/TIA

HACE--Treatment

- Immediate descent = definitive treatment
- Supplemental oxygen @ highest flow \rightarrow sats > 90%
- Dexamethasone 8 mg po/IM, then 4 mg q6hrs
- If cannot descend, hyperbaric therapy

٢

76

High Altitude Pulmonary Edema (HAPE)

- Non-cardiogenic pulmonary edema
- Accounts for most high-altitude deaths
- Occurs 1-3 days after arrival at altitude • Rarely occurs after 4 days—consider alternative diagnosis
- 1-2% of high-altitude climbers • 15% of those with rapid ascent

٢

77

HAPE Pathophysiology

- Hypoxia leads to pulmonary artery hypertension Increased pulmonary vascular resistance
 However, occurs in everyone, not just HAPE
- Pulmonary capillary pressure increases
- Leads to over-perfusion, capillary leakage
 Fluid as well as proteins leak out → exudative fluid
- With descent, pressure decreases
- Inflammatory mediators likely not primary process, but secondary to leaked proteins

HAPE Treatment

- Immediate descent
- Supplemental oxygen
 Decreases pulmonary artery pressure up to 50%
- Beta-agonists
- Increase fluid clearance from alveolar spaces
- No role for dexamthasone

٢

79

80

Case: snakebit

- 16 yo M hiking with buddies
- Came across rattlesnake on trail
- Tried to fend it off with a stick
- Snake bit patient on forearm approx. 2 hours ago
- Now, with pain, swelling, discoloration of forearm spreading from bite site
- Tachycardic, tachypneic, dizzy and sweaty

٢

USA

- 6-8,000 snakebite envenomations/year
 5-6 deaths/year (kids, elderly, delayed care)
 99% Crotalidae (pit vipers)

 5 subspecies of copperheads
 3 subspecies of cottonmouths
 > 60 subspecies of rattlesnakes

- • Definitely male
 - Under 30 years old • Mostly warm months
 - Bitten on extremity Alcohol involved
 - Stupidity: attempt to handle,

harm, or kill a snake Senseless risks

٩

86

Snake venom

- Pit vipers' (Crotalidae) venom contains zinc-dependent metalloproteinases
 - Direct capillary damage → hemorrhage & fluid extravasation
 Tissue necrosis
 Hemotxicity: consumptive coagulopathy → DIC
- Coral snakes' (Elapidae) venom contains alpha
 - neurotoxins • Direct neurotoxicity

Envenomation effects

- Majority: painful swelling at injury site; conservative management
- Smaller % significant morbidity: consumptive coagulopathy, renal failure, hypovolemic shock, anaphylaxis
- Children at higher risk: smaller size, higher concentration of venom

٢

89

Manifestations of pit viper envenomation

- Fang marks
- 30-60 minutes: pain, edema, erythema, ecchymosis at or around bite site
- Early systemic: nausea/vomiting, perioral paresthesia, fingers/toes tingling, lethargy, weakness, myokymia
- Rubbery, minty, or metallic taste
- Systemic: hypotension, tachypnea, tachycardia, altered sensorium

Snakebite treatment: in the field

- Move victim beyond striking distance
- Place victim at rest
- Keep victim warm
- Transport immediately to nearest emergency medical facility
- Remove constrictive clothing, jewelry
- No stimulants

٢

92

What NOT to do

- Tourniquets
- Incision and suction
- Cryotherapy (ice)
- Electric shock therapy
- IF a tourniquet has been placed as first aid, leave in place until hospital evaluation/initiation of antivenom Rx

٢

Snakebite treatment in ED

- Supportive care with IV fluids
- Screening labs for coagulopathy (draw from unaffected limb)
- Observe affected limb with leading edge of edema demarcated and time q30"
- Prophylactic antibiotics discouraged

٢

94

Use of antivenom

- Not well-defined

 - Not well-aetinea
 Moderate or increased swelling (progression)
 Lab evidence of coagulopathy
 Systemic signs
 All coral snake bites (due to risk of respiratory muscle paralysis)

lo net freeze

٢

95

Cro-Fab

- First approved in 2000
- Ovine (sheep) Fab₂ fragment
- Made from venom of 4 snakes
 - Eastern diamondback rattlesnake • Western diamondback rattlesnake

 - Mojave rattlesnake
 Cottonmouth (Water moccasin)
- Preferred therapy for envenomation

Cro-Fab

- Dose: 4-6 vials IV load (diluted in NS) initially; can reload if progression
 Not "ner ko" dosing-clinical effects due to yet
 - Not "per kg" dosing—clinical effects due to venom dose, not patient weight
- 2 vials q6-8hours maintenance dose
- Stops progression; does not resolve symptoms (takes days to weeks)
- Adjunctive analgesia required
- 14.3% reaction rate (urticaria mostly; serum sickness possible for 1-3 weeks)

٢

97

AnaVip

- First approved in 2018
- Equine (horse) F(ab')2 fragment
- Longer elimination half-life than Crofab
- $\boldsymbol{\cdot}$ Theoretically, requires less vials of antivenom dosing
- Dose: 10 vials loading dose IV
- Cost: Crofab \$3400/vial; Anavip \$1200/vial wholesale
- Early trials indicate more vials Anavip used vs. Crofab
- Late coagulopathy complications due to longer half-life

3

98

Disposition

- Observe all patients with pit viper bites in ED for minimum 8-12 hours
 - If no clinical or lab manifestations during this time, may discharge
- If treated with antivenom, should be admitted and monitored in an ICU

case: niker detween motner a baby

- 7 yo F hiking with mother & siblings in Breckenridge
 Got off the path and wandered between mother moose and her calf
- Mother moose charged patient, knocked her to ground and stomped on her head
- Patient transported to local hospital
- Awake, crying, GCS 13
- Large scalp lac with underlying crepitus, depression palpable

٢

Wild animal attacks: general

- Tearing, cutting, crushing, penetrating injuries
 Accompanying blunt trauma (falls, large animal forces)
 Local infection, variety of pathogens
 Transmission of systemic disease
 Demote wildowners areas

- Remote wilderness areas → delay in notification, rescue, definitive care

Best defense is avoidance

- Keep a clean camp
- Treat garbage like you would food
- Never take food into a tent
- Don't sleep in the same clothes you cooked dinner in
 Don't feed wild animals—even deer, squirrels (it attracts the bigger animals)

٢ 106

107

How to survive an animal attack

- Know thy enemy's psychological weak points
 - Loud noises
 - Scream & yell
 - Aggressive behavior
 - Wave your hands/clothing around
 - Appearance of size

109

٢

How to survive an animal attack

- If you can't scare the animal off, you have 2 choices:
 - RUN
 - FIGHT
 - Use sharp objects/weapons, if you
 - have them
 - Improvise: grab a big stick or a log
 - Strike at weak points, yell, make erratic movements

113

Field management of attack victim

- Airway
- Breathing
- Circulation
- DisabilityExposure
- Wound care: irrigate, debride, dress, splint
- ٢

. . .

Trauma management & wound care

- ATLS principles
 Wound care

 Explore
 Cleanse
 Irrigate
 Debride
 To close or not to close?
 Antibiotic coverage
 Tetanus prophylaxis