Pediatric Assessment: Sick or not Sick?

Sarah L. Pihl DNP, CPNP-AC Senior Instructor Pediatric Hospital Medicine Department of Pediatrics

Financial Disclosures

I have NO relevant financial relationships with any commercial interests

Objectives

- Discuss the differences of pediatric and adult physiology
- Identify a deteriorating pediatric patient's signs and symptoms using assessment tools
- Review initial interventions for a resuscitation and stabilization of a pediatric patient
- Discuss escalation of care of pediatric emergencies including changing levels of support and triggers for transferring a patient

Why do we care?

Hospitalizations

Over 5 million stays annually Total cost 46 billion dollars 17% admitted via ED Causes: Respiratory Mental Health

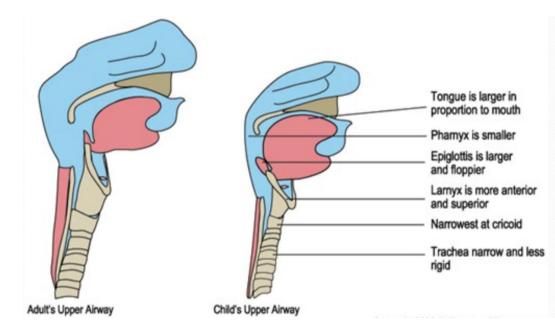
(Weiss, Liang, & Martin, 2022)

Why do we care?

Pediatric Cardiac Arrest

7-10% of EMS calls Most common ages 0-1 years & 15-17 years (Shekhar et al., 2022) Greater complexity of care (Hansen et al., 2023) OHCA has ~90% mortality (Mick & Williams, 2020)

Quick physiology review...

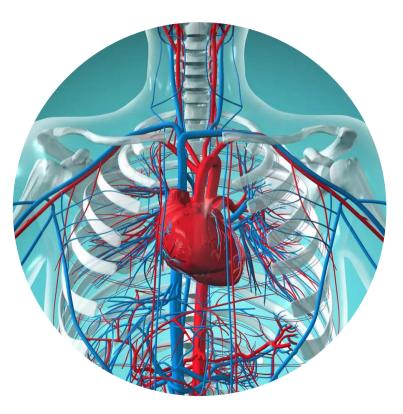


Respiratory

Pediatric vs Adult airway

- Larger head compared to body size
- Larger tongue compared to
 mouth size
- Smaller nose, mouth, airways
- Musculature not fully developed
- More flexible rib cage
- Rely more on abdominal musculature

(DiCicco et al., 2021)



Cardiovascular

Pediatric vs Adult cardiovascular system

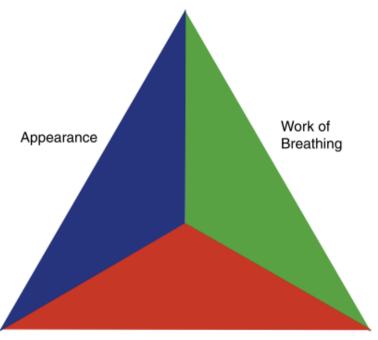
- Increased physiologic reserve
- Smaller circulating volume
- Decreased contractility
- Increased oxygen delivery and oxygen consumption

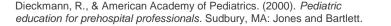
Neurologic

- Fontanelles provide increased tolerance of increased pressures and expansion
- Increased cerebral metabolism

(Figaji, 2017)

Physical Assessment


Approaching the Pediatric Patient



Pediatric Assessment Triangle

- Observational
 - No equipment needed
- Helps to prioritize interventions (Dieckmann, Fuchs, & Gausche-Hill, 2023)
- Indicate urgency and severity of illness

PALS

Vital Signs in Children

These 3 tables are reproduced or modified from Hazinski MF. Children are different. In: Nursing Care of the Critically III Child: 3rd ed. Mosby; 2013:1-18, copyright Elsevier.

Normal Heart Rates*

Age	Awake rate	Sleeping rate (beats/min)
Neonate	100-205	90-160
Infant	100-180	90-160
Toddler	98-140	80-120
Preschooler	80-120	65-100
School-age child	75-118	58-90
Adolescent	60-100	50-90

"Aways consider the patient's normal range and clinical condition. Heart rate will normally increase with fever or stress.

Normal Respiratory Rates*

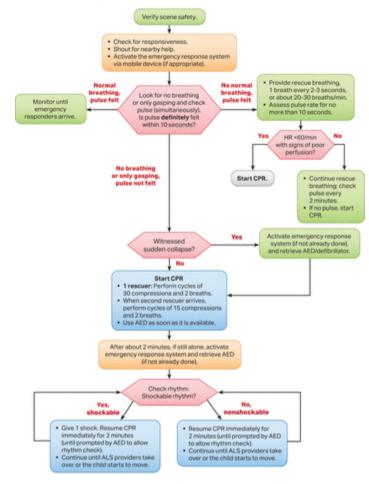
Age	Rate (breaths/min)
Infant	30-53
Toddler	22-37
Preschooler	20-28
School-age child	18-25
Adolescent	12-20

*Consider the patient's normal range. The child's respiratory rate is expected to increase in the presence of fever or stress.

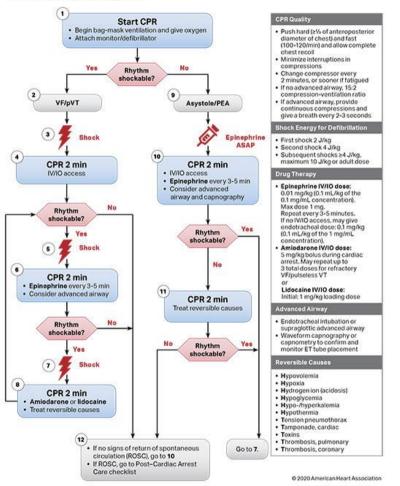
Data from Fleming S et al. Lancet. 2011;377(9770):1011-1018.

American Heart Association: https://shopcpr.heart.org/pals-digital-reference-card

University of Colorado Anschutz Medical Campus


https://news.childrensmercy.org/consumer-pulse-oximetry-home-baby-monitors-may-be-inaccurate--what-parents-and-physicians-need-to-know/

Sinds Rhythm


HR

Sp02

Pediatric Basic Life Support Algorithm for Healthcare Providers—Single Rescuer

Pediatric Cardiac Arrest Algorithm

@ 2020 American Heart Association

https://cpr.heart.org/en/resuscitation-science/cpr-and-ecc-guidelines/algorithms

Pediatric Early Warning Score

	0	1	2	3	Score
<u>Behavior</u>	 Active and alert Appropriate at baseline Sleeping and/or easily arousable 	SleepyFussy but consolable	Irritable Inconsolable Agitated, anxious	 Lethargic Confused Reduced response to pain 	
Cardiovascular	 Pink Capillary refill 1 to 2 seconds HR normal for age 	 Pale Capillary refill 3 seconds 	 Gray Capillary refill 4 seconds Tachycardia of 20 above normal rate 	 Mottled Capillary refill ≥5 seconds or above Tachycardia of 30 above normal rate or bradycardia. 	
<u>Respiratory</u>	RR normal for age No retractions or stridor	 RR>10 above normal parameters Use of accessory muscles 30%+ FIO₂ 3+ L per minute 	 RR greater than 20 above normal parameters Retractions 40%+ FIO₂ 6+ L per minute Ventilator dependent 	 RR below normal parameters with retractions Grunting 50% Fio₂ 8+ L per minute 	
			 ventuator dependent 	Continuous nebulization	
PEW 0 to :	- I Utali	ng	Individual PEWS of 3 in any category Notify resident or interm	PEWS ≥4	

Activate RRT

Lockwood, J., Reese, J., Wathen, B., Thomas, J., Brittan, M., Iwanowski, M., & McLeod, L. (2019). The Association Between Fever and Subsequent Deterioration Among Hospitalized Children With Elevated PEWS. *Hospital pediatrics*, 9(3), 170–178. https://doi.org/10.1542/hpeds.2018-0187

Distress or Failure?

https://drnozebest.com/blogs/the-doctor-is-in/signs-of-respiratory-distress-in-children

Early Signs/Symptoms

<u>Distress</u>

Tachypnea ↑ Respiratory Effort Abnormal Airway Sounds Retractions Accessory muscle use Abdominal breathing

Airway/Breathing

Failure

Marked Tachypnea (early) Apnea (late) ↑/↓ respiratory effort Poor/absent distal air Movement See saw breathing Tracheal tug Grunting Nasal Flaring Position of comfort

What do you observe that causes concern?

https://youtube.com/shorts/KQTEu1mpRY8?si=Ex6TDiML-_QCdI2g

What do you observe that causes concern?

https://youtube.com/shorts/Wvg7HFoKFtY?si=EmJTq bO_n-O0LTHM

Early Signs/Symptoms

Tachycardia Pale Cool extremities Normal Blood Pressure Decreased UOP

Late Signs/Symptoms

Circulation

Cyanosis Mottled skin Hypotension

Initial Impression

What do you observe that causes concern?

Early Signs/Symptoms

Irritability Restlessness Lethargy Tachycardic Mental Status

Late Signs/Symptoms

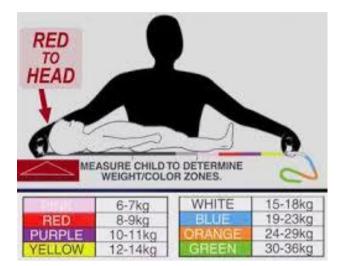
Decreased responsiveness Unresponsive Cushing's Triad Flaccid

Stabilization and Treatment

Evaluation

Identify Primary Underlying Problem/Cause

- Respiratory
 - Upper
 - Lower
- Circulation
 - Shock
 - Hypovolemic, Distributive, Cardiogenic, or Obstructive
- Neuro
 - Stroke
 - Seizure
 - Ingestion



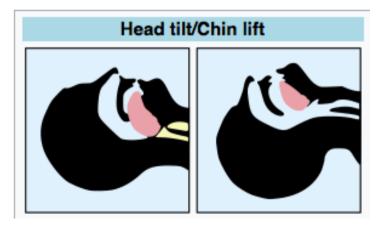
Early Intervention Considerations

- Ask for help!
- Use your resources
 - Call Provider, Charge Nurse, RT or additional EMS staff
 - IV/IO placement,
 - Pharmacy
 - Broselow tape or cart
 - Code Blue

Broselow-Luten Tape

https://crystalsokolovrn.com/wp-content/uploads/2019/05/Broselow-Pediatric-Emergency-Tape-2.pdf

		UE	
SEIZU	RE	ICP	
Lorazepam (2 mg/mL)	2 mg (1 mL)	3% Saline	42-105 mL
(4 mg/mL)	2 mg (0.5 mL)	Mannitol 20% (0.2 g/mL)	21 g (105 mL)
Diazepam IV (5 mg/mL)	4.2 mg (0.84 mL)	25% (0.25 g/mL)	21 g (84 mL)
Phenobarbital (65 mg/mL)	420 mg (6.5 mL)	Furosemide (10 mg/mL)	21 mg (2.1 mL)
(130 mg/mL)	420 mg (3.2 mL)	FLUIDS	5
Phenytoin (50 mg/mL)	420 mg (8.4 mL)	Fluid Bolus	
Fosphenytoin (50 mg PE/mL)	420 mg PE (8.4 mL)	Crystalloid (NS or LR)	420 mL
Levetiracetam (100 mg/mL)	1050 mg (10.5 mL)	Colloid/blood	210 mL
OVERDOSE/HYP		Maintenance	
D ₂₅ W (0.25 g/mL)	10.5 g (42 mL)	D5 1/2 NS + 20 mEq KCL/L	63 mL/hr
D ₅₀ W* (0.5 g/mL)	10.5 g (21 mL)	PAIN	
Naloxone (1 mg/mL)	2 mg (2 mL)	Fentanyl (50 mcg/mL)	21 mcg (0.42 mL)
(0.4 mg/mL)	2 mg (5 mL)	Morphine (2 mg/mL)	2.1 mg (1.1 mL)
Flumazenil (0.1 mg/mL)	0.2 mg (2 mL)	(4 mg/mL)	2.1 mg (0.53 mL)
Charcoal (25 g/120 mL)	21 g (100mL)		
Glucagon (1 mg/mL)	1 mg (1 mL)	* Dilute D ₅₀ W 1:1 with preservative	free sterile water
EQUIPM	AENT	EQUIPME	NT
*E.T. Tube	5.5 Uncuffed/*5.0 Cuffed	Oxygen Mask	Pediatric NRB
E.T. Insertion Length	15.5-16.5 cm	*ETCO2	Adult
Stylet	10 French	*Urinary Catheter	10-12 French
Suction Catheter	10 French	*Chest Tube	20-28 French
Laryngoscope	2 Straight or Curved	NG Tube	10-14 French
BVM	Child	Vascular Access	18-20 Ga
Oral Airway	70 mm	Intraosseous (10)	15 Ga
*Nasopharyngeal Airway	24 French	BP Cuff	Child
*LMA	2-2.5		
LINA	L-L.J	*May not be included in Organi	zer system(s).


https://www.hmpgloballearningnetwork.com/site/emsworld/article/1224785/times-tapes-are-changin-latest-broselow-luten-tape-ems

Airway Interventions

- Positioning
 - Allow patient to assume position of comfort
 - Head tilt-chin lift maneuver (shoulder roll)
- Suction
- Positive pressure with BVM
- Nasopharyngeal (NP) airway
- Medications
 - Racemic Epinephrine
 - Albuterol

Breathing Interventions

- Determine upper vs lower airway disease
- Apply oxygen Blowby, NC, HFNC, NIPPV, Intubation
- Suction
 - Hydration status?
- Medications
 - Albuterol
 - Racemic epi nebs

Upper Airway Obstruction

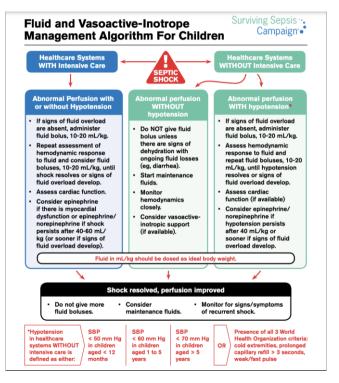
https://youtube.com/shorts/Wvg7HFoKFtY?si=EmJTq bO_n-O0LTHM

Lower Airway Obstruction

Circulation Interventions

Shock

Classification of Shock							
Volume			Output				
	h ift tive shock	Loss Hypovolemic shock		Cardiac Cardiogenic shock		Extracardiac Obstructive shock	
Septic	Capillary leakage	Hemorrhagic (traumatic or nontraumatic)	Blood (whole)	Myocardial causes	Myocardium	Impaired diastolic filling	E.g., cardiac tamponade
Anaphylactic Anaphylactoid	Vascular tone dysregulation	Nonhemorrhagic (nontraumatic)	Body fluids (e.g., GI loss)	Arrhythmias	Conduction system	↑ Ventricular afterload	E.g., massive PE
Neurogenic	a joi egalation	Nonhemorrhagic (traumatic)	Plasma (e.g., from burns)	Valvular heart disease		Obstruction of venous return	E.g., tension pneumothorax
Vasodilation Hypovolemia		Č	Pump failure	Cardiac- tamponade	Obstruction		


https://www.amboss.com/us/knowledge/shock

Circulation Interventions

Shock

- PALS Algorithms
 - Stop source of fluid losses if applicable
- Fluid Bolus
 - 20 mL/kg
 - Isotonic fluids
- Medications
 - Anaphylaxis
 - Sepsis Activation
- Expert consultation

Initial Impression

Septic shock Delayed cap refill Cold extremities

https://www.youtube.com/watch?v=kl07lKNnTzc

Disability Interventions

Mental Status

- GCS
- AVPU
- Neuro Exam
- Seizure
- Stroke
- Ingestion

	GLASGOW CON	ASCALE	
<2	Years Old EYES	Age 2 - Ad	ult
4	Spontaneous	Spontaneous	4
3	To speech	To speech	3
2	To pain	To pain	2
1	None	None	1
	VERBA		
5	Coos, babbles	Oriented	5
4	Irritable, cries	Confused	4
3	Cries to pain	Inappropriate words	3
2	Moans to pain	Incomprehensible	2
1	None	None	1
	MOTOR		
6	Normal spontaneous movements	Obeys commands	6
5	Withdraws from touch	Localizes to pain	5
4	Withdraws from pain	Withdrawal to pain	4
3	Abnormal flexion	Flexion to pain	3
2	Abnormal extension	Extension to pain	2
1	None	None	1
	Total PGCS Score	Total GCS Score	

https://www.triagetags.com/gcs-jumpstart-pediatric-cards

Exposure Interventions

Thermoregulation

- Remove wet or damaged clothing
- Warming
 - Blankets
 - Warmed IV fluids
 - Bair Hugger, heat packs
- Cooling
 - Remove layers
 - Ice packs, wet washcloths
 - Cooling blankets
 - Antipyretics

	Monitor	Serial assessments Disease specific severity scores Utilize Pediatric Early Warning Score (PEWS)
Escalation	Escalate	Escalate support using Clinical Pathways as a guide • Keep in mind your facilities resources
	Call	Call In house ED provider or code team Call an RRT or call CHCO OneCall to speak with PICU, ED or Inpatient teams Activate transfer to higher level of care

Progressive Case Study

Case Study – EMS call to home

14 month old child with no prior medical history with increased work of breathing. Caregiver called 911 due to child's distress

Caregiver endorses three days of URI symptoms including cough and rhinorrhea with fevers up to 103.

Hx: Born full term. Imm UTD. Attends daycare. No known allergies.

VS: T: 102.6°F HR: 156 RR: 46 O₂ Sat: 89% BP: 92/48

 PE: General: WNWD, non-toxic appearing, alert
 Neuro: Held by caregiver, tracking examiner, crying upon approach but soothed easily, normal tone throughout
 HEENT: NC/AT, PERRL, no eye discharge or injection, mild rhinorrhea
 Resp: Tachypneic, mild subcostal retractions with belly breathing, no wheezing, rhonchi, or rales. Aerating to bases. Equal chest rise.
 Cardiac: Tachycardic rate, no m/r/g, distal pulses 2+, cap refill 2s, warm extremities
 Abdomen: Soft, ND/NT, no HSM or masses. Normoactive BS.
 MSK: MAES, FROM, no edema or tenderness

Case Study

PAT – Respiratory only PEWS score: Behavior 0 CV 0 Resp 1

Initial management:

Supplemental oxygen

What level of support?

Suction

Nasal aspirator (non-invasive)

https://vimeo.com/508853687/684e8a81cd

Hydration status

Making urine? Drinking?

Antipyretics

Case Study – Emergency Department

Assessment upon arrival:

VS: T: 99.1°F (37.3°C) HR: 166 RR: 62 O₂ Sat: 90% on 3L LFNC BP: 88/50

PE: General: WNWD, tired appearing

Neuro: irritable with intermittent crying

HEENT: NC/AT, PERRL, no eye discharge or injection, rhinorrhea with congestion noted

- **Resp:** Tachypneic, moderate subcostal and intercostal retractions with belly breathing, intermittent grunting noted, expiratory wheeze, no rhonchi, or rales. Prolonged expiratory phase. Aerating to bases bilaterally and nonfocal. Equal chest rise.
- **Cardiac:** Tachycardic, no m/r/g, distal pulses 2+, cap refill 3s, cool fingers with warm hands

Abdomen: Soft, ND/NT, no HSM or masses. Normoactive BS.

MSK: MAES, FROM, no edema or tenderness

Skin: Mild diaper rash, no lacerations or ecchymosis.

No UOP for 6 hours

Case Study – Emergency Department

PEWS score: Behavior 2 CV 1 Resp 3

PAT: Resp and circulation

Initial management:

Supplemental oxygen

What level of support?

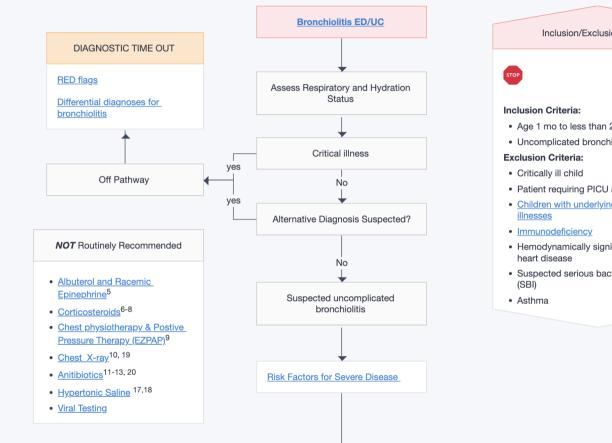
High Flow Nasal Cannula (HFNC)

Suction

NP suction with catheter and saline

Hydration status

Place IV and administer 20 mL/kg fluid bolus


Start mIVF

Antipyretics

Other interventions?

Inclusion/Exclusion Criteria Age 1 mo to less than 2 years Uncomplicated bronchiolitis · Patient requiring PICU admission <u>Children with underlying respiratory</u> · Hemodynamically significant congenital Suspected serious bacterial infections

https://www.agilemd.com/flowcharts/viewer/modules/mo_101653b66ec031b8/files/fi_118555d31a003311

HFNC Initiation Pearls

GUIDELINE

- 1. Prior to initiation of HFNC therapy, the following are encouraged:
 - A. Multi-disciplinary huddle to evaluate the patient's overall condition and additional supportive measures for the patient that may be needed, such as fever, dehydration, agitation, and pain.
 - B. Suction the patient to ensure that upper airway is cleared from residual secretions
 - C. Position patient in upright position to augment work of breathing
 - D. Adjust oxygen flow rates to maximum on current device to achieve goal saturations
 - 1) See Oxygen Delivery Devices
 - 2) Reassess patient within 15 minutes following interventions outlined above.
- 2. If no improvement of patient's saturations and/or work of breathing after interventions, contact the Provider and collaborate with healthcare team to initiate HFNC.
- 3. Patients who do not respond with improved clinical status within one (1) hour, should be reassessed by the medical team and/or Rapid Response Team (RRT) for consideration of an ICU placement or transfer.

Acute Care Flow Guidelines

Age	Acute Care Flow Rate Limit L/min
30 days up to 12 months	8
13 months up to 24 months	10
25 months up to five (5) years	12
Greater than five (5) years	16

Case Study – ED to Inpatient

Admitted to Inpatient unit. Assessment on arrival to medical floor:

VS: T: 99.1°F (37.3°C) HR: 162 RR: 52 O₂ Sat: 92% on 8L HFNC, 40% BP: 94/54

PE: General: WNWD, tired appearing

Neuro: Sleeping but easily arousable, crying but able to be soothed by caregiver
HEENT: NC/AT, PERRL, no eye discharge or injection, rhinorrhea with congestion noted
Resp: Tachypneic, mild subcostal and intercostal retractions with belly breathing, no wheeze, rhonchi, or rales. Aerating to bases bilaterally and nonfocal. Equal chest rise.
Cardiac: Tachycardic, no m/r/g, distal pulses 2+, cap refill 2s
Abdomen: Soft, ND/NT, no HSM or masses. Normoactive BS.
MSK: MAES, FROM, no edema or tenderness
Skin: Mild diaper rash, no lacerations or ecchymosis.

Floor orders: mIVF and PO ALD. Strict I/Os. Continued antipyretics. Suctioning PRN. PEWS: Behavior 2 CV 1 Resp 1

Case Study – Inpatient

Next morning, RN reports patient is worsening. PEWS: Behavior 3 CV 2 Resp 3

- VS: T: 100.2°F (37.9°C) HR: 174 RR: 70 O₂ Sat: 93% on 10L HFNC, 60% BP: 86/45
- PE: General: WNWD, somnolent

Neuro: Primarily sleeping, more difficult to arouse and maintain wakefulness, crying intermittent **HEENT:** NC/AT, PERRL, no eye discharge or injection, congestion noted

Resp: Tachypneic, moderate subcostal, intercostal retractions with belly breathing, tracheal tug, no wheeze, rhonchi, or rales. Prolonged expiratory phase with diminished breath sounds bilaterally. Equal chest rise.

Cardiac: Tachycardic, no m/r/g, distal pulses 2+, cap refill 4s

Abdomen: Soft, ND/NT, no HSM or masses. Normoactive BS.

Next steps?

Skin: Pale, mild diaper rash, no lacerations or ecchymosis.

MSK: MAES, FROM, no edema or tenderness

Take Away Points

- Use assessment tools to help guide your clinical decision making
- Know where to access resources for pediatric care
- Be familiar with current recommendations and guidelines
- Community Resources: CHCO Pathways
 - <u>https://www.childrenscolorado.org/health-</u> professionals/clinical-resources/clinicalpathways/
- If clinically worsening, discuss with other experienced providers or initiate transfer to higher level of care

Thank you

Questions?

References

- American Heart Association: <u>https://shopcpr.heart.org/pals-digital-reference-card</u>
- Di Cicco, M., Kantar, A., Masini, B., Nuzzi, G., Ragazzo, V., & Peroni, D. (2021). Structural and functional development in airways throughout childhood: Children are not small adults. *Pediatric Pulmonology*, *56*(1), 240-251.
- Bolick, B., Reuter-Rice, K., Madden, M., & Severin, P. (2020) Pediatric Acute Care: A Guide for Interprofessional Practice, 2nd Edition. Burlington, MA: Jones and Bartlett Learning. ISBN: 978-0323673327
- Children's Hospital Colorado: Suctioning Video (2023). <u>https://vimeo.com/508853687/684e8a81cd</u>
- Dieckmann, R. A., Fuchs, S., & Gausche-Hill, M. (2023). The Pediatric Education for Prehospital Professionals Course and the Pediatric Assessment Triangle: A 25-year Retrospective. *Prehospital Emergency Care*, 1-5.
- Figaji, A. A. (2017). Anatomical and physiological differences between children and adults relevant to traumatic brain injury and the implications for clinical assessment and care. *Frontiers in neurology*, *8*, 685.
- Hansen, M., Walker-Stevenson, G., Bahr, N., Harrod, T., Meckler, G., Eriksson, C., & Guise, J. M. (2023). Comparison of Resuscitation Quality in Simulated Pediatric and Adult Out-of-Hospital Cardiac Arrest. *JAMA Network Open*, 6(5), e2313969e2313969.
- Lockwood, J., Reese, J., Wathen, B., Thomas, J., Brittan, M., Iwanowski, M., & McLeod, L. (2019). The Association Between Fever and Subsequent Deterioration Among Hospitalized Children With Elevated PEWS. *Hospital pediatrics*, 9(3), 170–178. https://doi.org/10.1542/hpeds.2018-0187
- Mick, N. W., & Williams, R. J. (2020). Pediatric Cardiac Arrest Resuscitation. *Emergency medicine clinics of North America*, *38*(4), 819–839. <u>https://doi.org/10.1016/j.emc.2020.06.007</u>
- Shekhar, A. C., Campbell, T., Mann, N. C., Blumen, I. J., & Madhok, M. (2022). Age and racial/ethnic disparities in pediatric out-of-hospital cardiac arrest. *Circulation*, *145*(16), 1288-1289.

Weiss, A. J., Liang, L., & Martin, K. (2022). Overview of hospital stays among children and adolescents, 2019. *Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet]*.

References

- <u>https://www.childrensairwayfirst.org/post/airway-centric-dentist-for-children</u>
- https://news.childrensmercy.org/consumer-pulse-oximetry-home-baby-monitors-may-be-inaccurate--what-parents-and-physicians-need-to-know
- <u>https://www.hmpgloballearningnetwork.com/site/emsworld/article/1224785/times-tapes-are-changin-latest-broselow-luten-tape-ems</u>
- <u>https://crystalsokolovrn.com/wp-content/uploads/2019/05/Broselow-Pediatric-Emergency-Tape-2.pdf</u>
- <u>https://en.wikipedia.org/wiki/Head_tilt/Chin_lift#/media/File:Tongue_blocking_airway.svg</u>
- https://www.amboss.com/us/knowledge/shock
- https://www.sccm.org/sccm/media/ssc/Initial-Resuscitation-Algorithm-for-Children.pdf
- <u>https://drnozebest.com/blogs/the-doctor-is-in/signs-of-respiratory-distress-in-children</u>
- <u>https://www.thoughtco.com/cardiovascular-system-373577</u>
- <u>https://www.istockphoto.com/photo/asian-3-4-years-old-toddler-boy-gets-high-fever-lying-on-bed-with-cold-compress-wet-gm1175007086-327014210</u>
- <u>https://cpr.heart.org/en/resuscitation-science/cpr-and-ecc-guidelines/algorithms</u>
- https://news.childrensmercy.org/consumer-pulse-oximetry-home-baby-monitors-may-be-inaccurate--what-parents-and-physicians-need-to-know
- <u>https://youtube.com/shorts/KQTEu1mpRY8?si=Ex6TDiML-_QCdI2g</u>
- <u>https://youtube.com/shorts/EYqi7hHBEVs?si=_MS169vd_BLEwIYU</u>
- <u>https://youtube.com/shorts/Wvg7HFoKFtY?si=EmJTqbO_n-O0LTHM</u>
- <u>https://www.youtube.com/watch?v=kl07lKNnTzc</u>
- https://www.triagetags.com/gcs-jumpstart-pediatric-cards
- https://childrenscolorado.navexone.com/content/dotNet/documents/?docid=16239
- https://www.agilemd.com/flowcharts/viewer/modules/mo_101653b66ec031b8/files/fi_118555d31a003311

