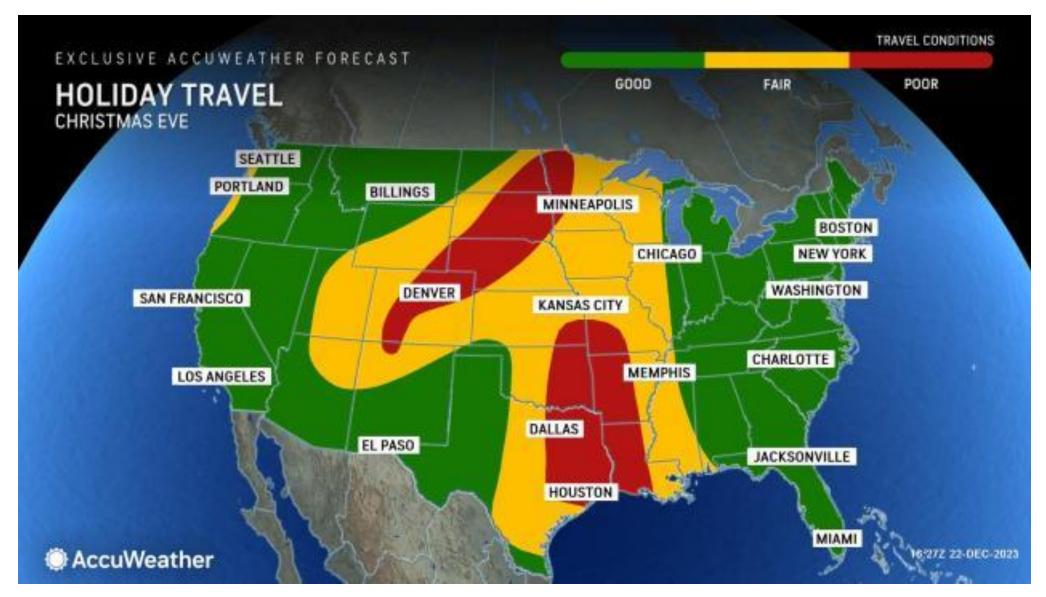
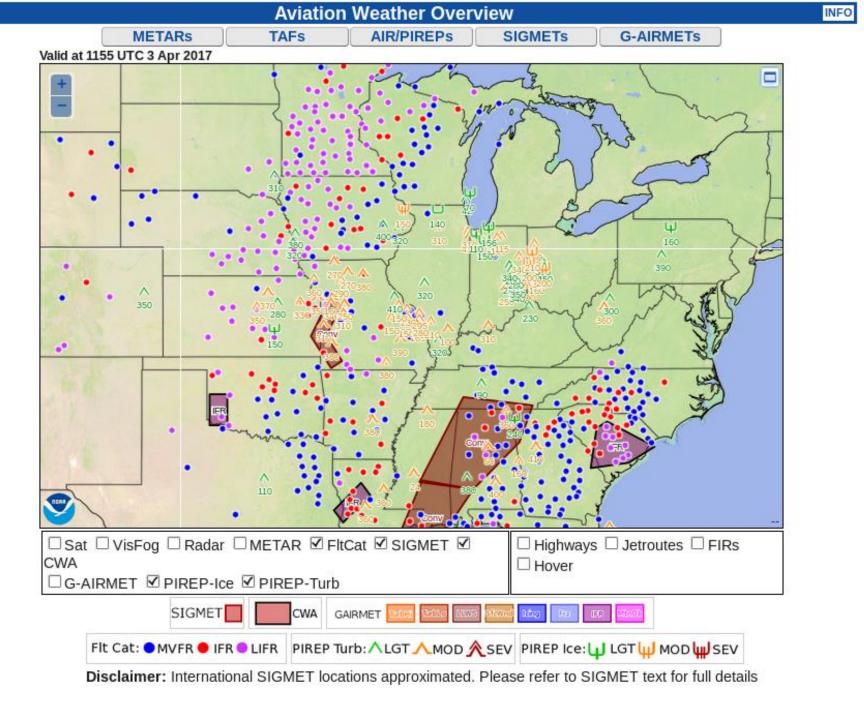

Overstaying Your Welcome: Extended Management of the Trauma Patient

John Wiersch, MD Pediatric Surgeon Children's Hospital Colorado





Objectives

- Discuss the literature on hospital transfer times
- Review ATLS primary & secondary assessments
- Discuss extended management options for various injuries

What is the Golden Hour?

The "Golden Hour"

 The first hour after a traumatic injury where you have the time-limited opportunity to prevent irreversible injury and death in severe trauma

The Reality

- Even under the best circumstances, most patients do not arrive at a trauma center within 1 hour... or 2 hours... or sometimes 4 or more hours...
- Outcomes do not always depend on rapidity of transport

Analysis of Compliance and Outcomes in a Trauma System With a 2-Hour Transfer Rule

Marie L. Crandall, MD, MPH; Thomas J. Esposito, MD, MPH; R. Lawrence Reed, MD; Richard L. Gamelli, MD; Frederick A. Luchette, MD

- Review of trauma patients in Chicago at a single trauma center
- Only 20% of patients arrived a trauma center within 2 hours of injury - the most severely injured patients
- Early arrival patients: higher ISS, more likely to have same day surgery, more likely to have surgery during admission, increased severity of head/ortho injuries compared to late group
- Median transport time 2 hrs 20 mins
- Amongst delayed group: Group mortality equivalent to total mortality rate, no clear adverse effect on outcomes

Analysis of Compliance and Outcomes in a Trauma System With a 2-Hour Transfer Rule

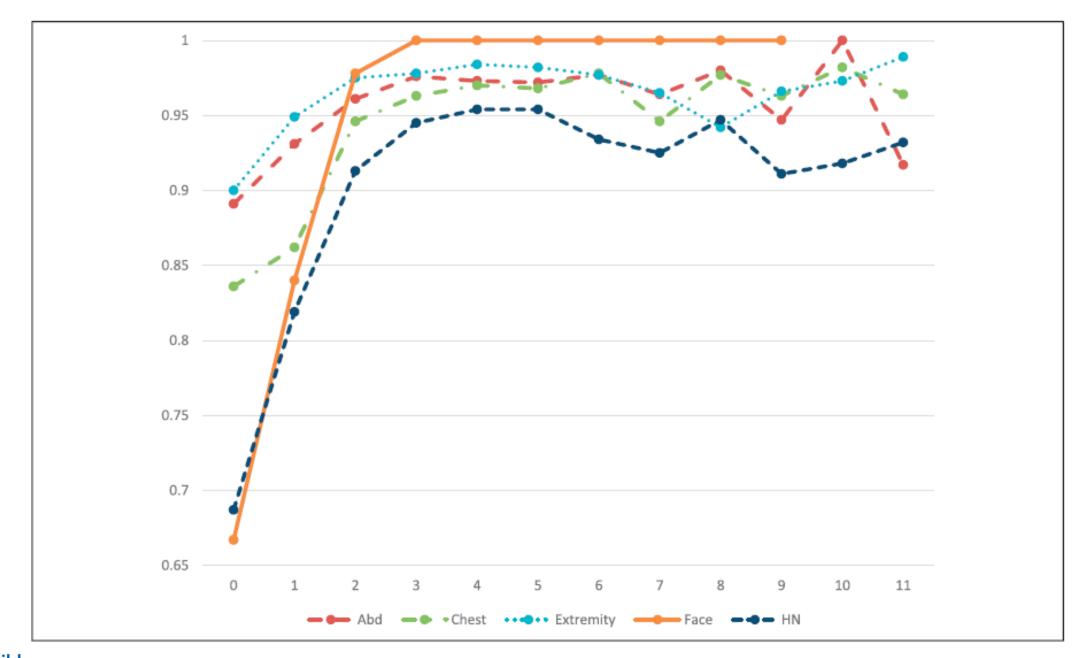
Marie L. Crandall, MD, MPH; Thomas J. Esposito, MD, MPH; R. Lawrence Reed, MD; Richard L. Gamelli, MD; Frederick A. Luchette, MD

Arch Surg. 2010;145(12):1171-1175

Takeaways:

- The golden 2 (?) hours may not be as critical for all but the most severely injured patients
- The most severely injured patients move the fastest
- The less injured patients don't seem to have significantly adverse outcomes from delay in transfer

Prolonged Emergency Department Stay at Referring Facilities: A Poor Trauma Performance Improvement Tool


Pascal Udekwu, MBBS, MBA/MHA^{1,4}, Brian Simonson, BS, NRP^{2,4}, Anquonette Stiles, DC, MPH^{1,4}, Sarah McIntyre, MSN^{1,4}, Kimberly Tann, BS^{1,4}, and Sharon Schiro, PhD^{3,4}

The American Surgeon 2022, Vol. 88(4) 728–733

- Review of trauma patients to address an ED LOS >4 hrs at referring facilities before trauma center transfer
- Performed at UNC / Wake Forest
- Pediatric patients excluded due to differing baseline vital signs by age

Childi Figure 1. Survival vs RF LOS by AIS. y-axis = (proportion of patients surviving transferred within each time period). x-axis = $\{n\}$ to $\{n.9\}$ hours at referring facility

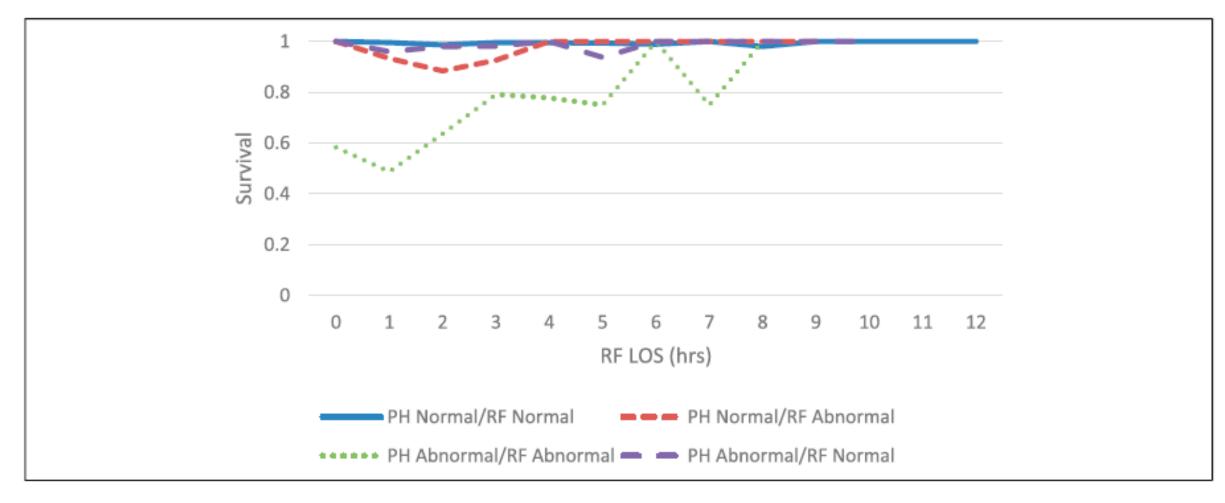


Figure 2. GCS-M Survival v RF LOS.

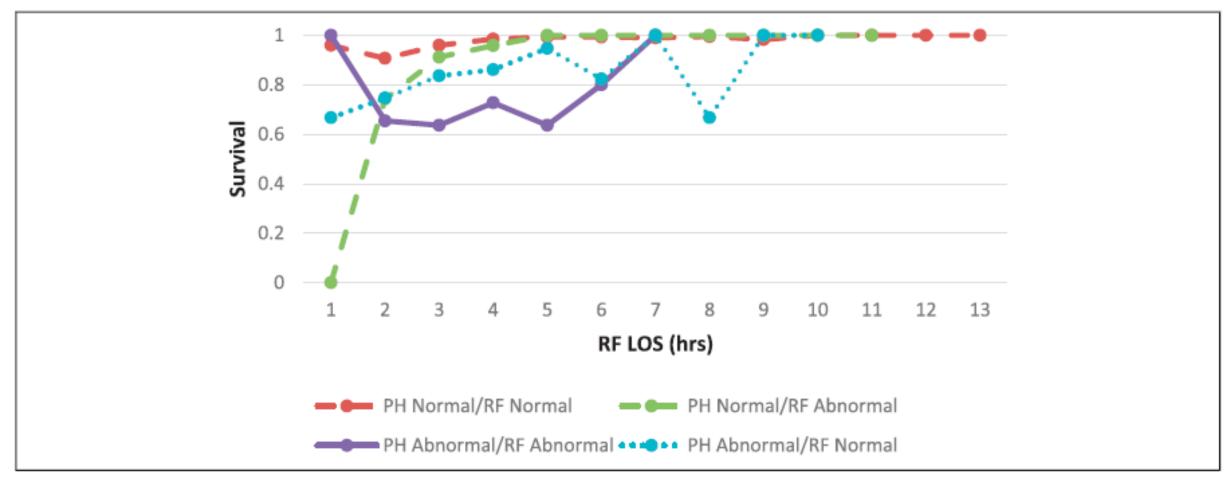


Figure 3. SBP Survival by RF LOS.

Prolonged Emergency Department Stay at Referring Facilities: A Poor Trauma Performance Improvement Tool

Pascal Udekwu, MBBS, MBA/MHA^{1,4}, Brian Simonson, BS, NRP^{2,4}, Anquonette Stiles, DC, MPH^{1,4}, Sarah McIntyre, MSN^{1,4}, Kimberly Tann, BS^{1,4}, and Sharon Schiro, PhD^{3,4}

The American Surgeon 2022, Vol. 88(4) 728–733

Takeaways:

- Early deaths after traumatic injury tended to occur within the first two hours
- Patients with severe injuries to the face, head, and neck died most often in the first two hours of stay at the presenting facility
- Findings suggest that minimizing LOS for patients presenting with low systolic blood pressure might have the most benefit
- No particular area of bodily injury was associated with increased mortality with increasing LOS at the referring facility

Outcomes of trauma patients: Direct transport versus transfer after stabilisation at another hospital

Kuang-Yu Hsiao ^{a,b}, Leng-Chieh Lin ^{a,b}, Meng-Hua Chou ^a, Cheng-Chueh Chen ^c, Hwa-Chan Lee ^d, Ning-Ping Foo ^{e,f,g}, Chi-Jei Shiao ^h, I-Chuan Chen ^{a,b}, Cheng-Ting Hsiao ^{a,i}, Kai-Hua Chen ^{i,j,*}

- Review of trauma patients who were stabilized at a local hospital before interfacility transfer in comparison to those transferred direct to trauma centers from scene of injury
- Trauma system in Taiwan
- Interval to 1st hospital arrival: 27 mins overall, 28 mins direct from scene, 25 minutes scene to transferring hospital
 - Significantly better transport time for transfers to local facility
- Interval from 1st hospital arrival to trauma center arrival: 138 mins

Outcomes of trauma patients: Direct transport versus transfer after stabilisation at another hospital

Kuang-Yu Hsiao ^{a,b}, Leng-Chieh Lin ^{a,b}, Meng-Hua Chou ^a, Cheng-Chueh Chen ^c, Hwa-Chan Lee ^d, Ning-Ping Foo ^{e,f,g}, Chi-Jei Shiao ^h, I-Chuan Chen ^{a,b}, Cheng-Ting Hsiao ^{a,i}, Kai-Hua Chen ^{i,j,*}

- ISS
 - Direct to trauma ctr: 27.7, Transfer from local hospital: 25.6
- Mortality
 - Direct to trauma ctr: 14.1%, Transfer from local hospital: 14.7%
- Other factors without significant differences:
 - % of hypotensive patients
 - Total GCS score
 - Values for Hgb & platelet count

Outcomes of trauma patients: Direct transport versus transfer after stabilisation at another hospital

Kuang-Yu Hsiao a,b, Leng-Chieh Lin a,b, Meng-Hua Chou , Cheng-Chueh Chen , Hwa-Chan Lee d, Ning-Ping Foo ^{e,f,g}, Chi-Jei Shiao ^h, I-Chuan Chen ^{a,b}, Cheng-Ting Hsiao ^{a,i}, Kai-Hua Chen ^{i,j,*}

Injury, Int. J. Care Injured 43 (2012) 1575-1579

Takeaways:

Treatment rendered during the prehospital and 1st hospital phase can be effective at reducing overall mortality

ATLS Primary & Secondary Survey

ATLS Assessment

- Primary survey
- Secondary survey
- Adjuncts

Primary Survey

- A Airway
- B Breathing
- C Circulation
- D Disability
- E Exposures
- Identify and treat immediate threats to life

Secondary Survey

- Head to toe thorough examination
- Labs
- X-rays
- FAST
- CT
- Transfer call

Managing Your Prolonged Guest

Priorities - Pilots

- Aviate
- Navigate
- Communicate

Priorities – Healthcare Providers

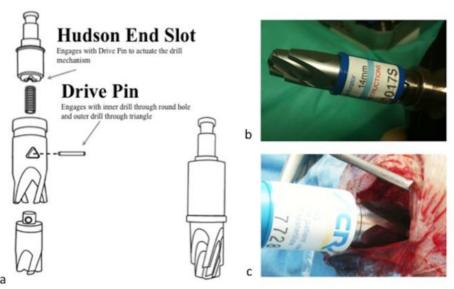
- Treat the patient
- Assess where you are and make a plan
- Call for help

Head Injuries

- Primary survey!
 - Manage the airway in severe TBI
 - Obtain good vascular access
- Image the problem share with your friends!
- Support the patient

Head Injuries

- Supportive treatments for intracranial hypertension
 - Adequate sedation +/- paralysis
 - Airway management Avoid hypoxemia
 - Normocapnia (CO₂ levels) avoid hyperventilation!
 - Elevate HOB 30 degrees
 - Avoid hyperthermia
 - Normoglycemia
 - Normotension
 - Correct coagulopathies



Head Injuries

- Treatments for intracranial hypertension
 - Hypertonic saline (3% NS @ 5 mL/kg boluses)
 - Mannitol with caution & outside advisement
 - Burr hole?
 - https://www.acepnow.com/article/perform-emergency-burrhole-procedure/

Chest Injuries

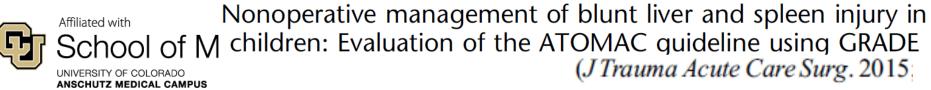
- What's in there?
 - Heart
 - Lungs
 - Big blood vessels
- Cardiac injury (blunt)
 - Most common sign is dysrhythmia (tachycardia)
 - Supportive care
 - Treatment of major arrhythmias, monitoring of the rest
 - No need to follow troponins

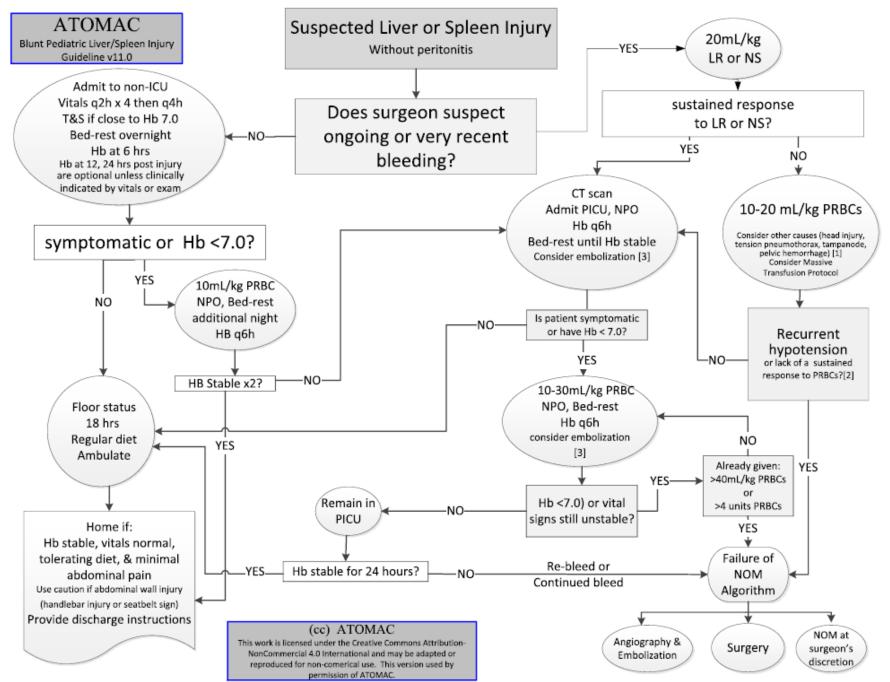
Chest Injuries

- Pneumothorax/Hemothorax
 - Small consider observation, repeat CXR if respiratory status worsens
 - Moderate/Large chest tube drainage
- Pulmonary contusions
 - Support respirations using non-invasive methods if able
 - If ventilated, small tidal volumes (6 cc/kg)
 - Avoid fluid overload

Chest Injuries

- Aortic disruption
 - Good news is the patient arrived alive!
 - Avoid hypertension
 - Treat discomfort and anxiety
 - Inform receiving center





Abdominal Injuries – Solid Organs

- Liver/Spleen ATOMAC Guidelines for Non-Operative Management
- The grand majority of pediatric patients do not require intervention for spleen/liver injuries even at higher grades
- DON'T angioembolize the blush! Follow the protocol!

Children's Hos Here, it's different." spleen injury in e using GRADE Care Surg. 2015

Abdominal Injuries – Solid Organs

- While not clearly defined, transfusion thresholds of 40 mL/kg are suggested by some studies to be the limit at which intervention is suggested
- Most common intervention is angioembolization
- Correct coagulopathy if present
- Allow the stable kids to eat!

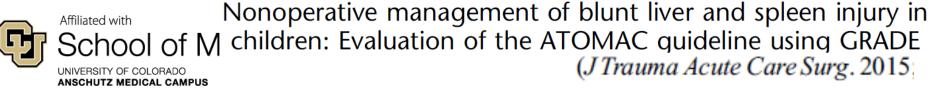


TABLE 2. Comparison of Clinical Variables Between Low- and High-Grade Spleen Injuries

Variable	Low Grade (I–III) (n = 70)	High Grade (IV and V) $(n = 23)$	p
Median age, y	11.9 (7.5-14.8)	12.3 (8.4–14.8)	0.8
Injury Severity Score	9.5 (5–17)	21 (16–26)	0.00
Median LOS without TBI	1.0 (0.4–2.9)	1.6 (0.6–3.7)	0.3
Median LOS with TBI	0.8 (0.3-3.1)	1.0 (0.4–5.1)	0.1
ICU admission	18% (13)	43% (10)	0.1
Transfusion requirement	4% (3)	30% (7)	0.00

TBI, traumatic brain injury.

TABLE 3. Comparison of Clinical Variables Between Low- and High-Grade Liver Injuries

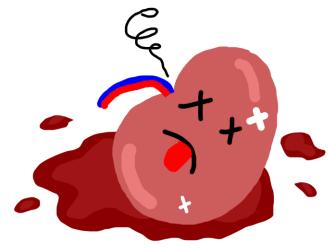
Variable	Low Grade (I–III) (n = 70)	High Grade (IV and V) (n = 36)	p
Median age, y	9.5 (5.0-15.3)	8.8 (4.5-12.5)	0.38
Injury Severity Score	10.5 (5–17)	17 (16–29)	0.0002
Median LOS without TBI	1.0 (0.3–2.8)	1.9 (1.0-6.6)	0.06
Median LOS with TBI	0.8 (0.7-3.8)	1.2 (1.6–7.1)	0.1
ICU stay	11.4% (8)	44% (16)	0.00
Transfusion requirement	17.1% (12)	61% (22)	0.00

TBI, traumatic brain injury.

Institutional outcomes of blunt liver and splenic injury in the Arizona-Texas-Oklahoma-Memphis-Arkansas Consortium era

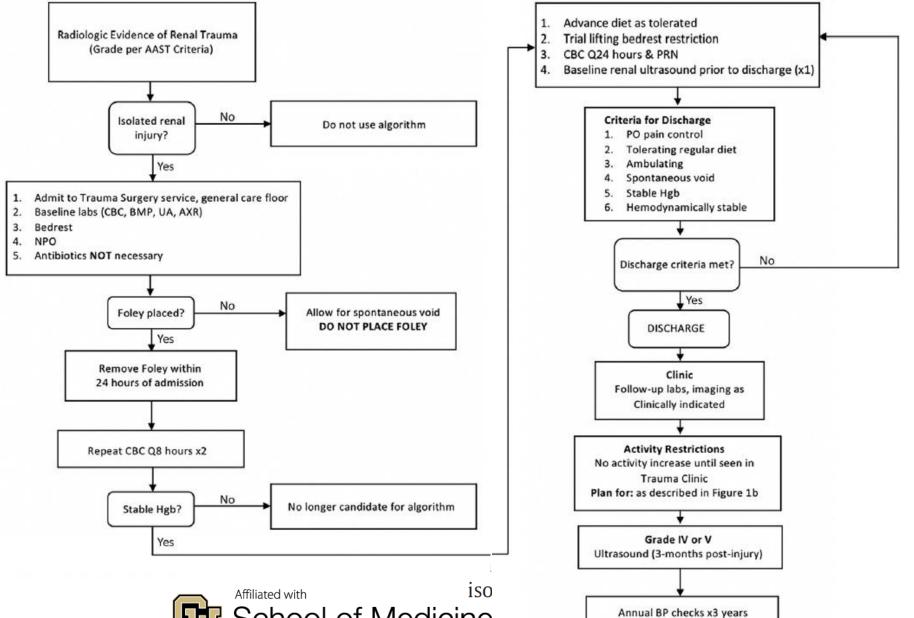
Abdominal Injuries – Solid Organs

- Only 3 patients with grade 5 liver injuries required surgery (1.5%)
- Only 3 patients with grade 4 spleen injuries required angioembolization (1.5%)



Institutional outcomes of blunt liver and splenic injury in the Arizona-Texas-Oklahoma-Memphis-Arkansas Consortium era

Abdominal Injuries – Solid Organs


- Kidney injuries
- Similar to spleen/liver injuries, kidney injuries are also managed non-operatively
- EAST/PTS collaboration on non-operative treatment recommendation
- Below study, only one patient (2%) failed non-operative management and this patient presented in a delayed fashion after initial hospital discharge

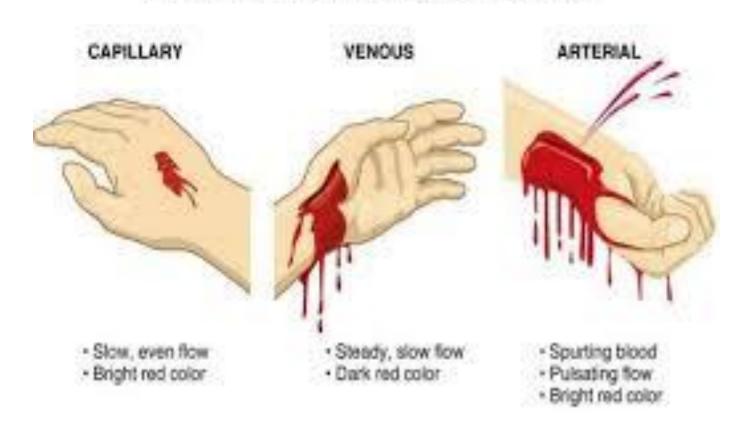
Implementation of a clinical guideline for nonoperative management of isolated blunt renal injury in children

ative management of

Abdominal Injuries – Hollow Viscous Injury

- Presenting signs:
 - Peritonitis
 - Free air on imaging
 - Signs of developing sepsis
- Supportive care:
 - Fluid resuscitation, ensure adequate IV access
 - Antibiotics
 - Vasopressors if needed
 - Communication with a surgeon

Whenever you encounter massive bleeding, the first thing to remember is: it's not your blood.


Raphael Adar, MD, FACS

Bleeding

Hemorrhage Classification

Bleeding

- STOP THE BLEED!
 - Direct pressure
 - Packing
 - Tourniquets
 - Pelvic binder
- Small vessel bleeding can be significant if left uncorrected for long periods of time - check bulky dressings!

School of Medicine

ANSCHUTZ MEDICAL CAMPUS

Don't forget appropriate use of bedside exploration and ligation

Bleeding

- Some named vessels (i.e. radial artery) can be ligated!
- Pressure held in the right place for a long enough time can allow holes in even large vessels to clot
 - Large cannula sites for aortic endografts and ECMO cannulas can be closed in this manner even after anticoagulation

Calling for Help OneCall Connection is about to get easier

720-777-3999

- Admissions/Transfers
- Phone consultation with a surgeon
- Telephoto image sharing

School of Medicine

UNIVERSITY OF COLORADO

ANSCHUTZ MEDICAL CAMPUS

What We Can Do to Help

- Clinical decision making
- Algorithm selection
- Procedural guidance
- Consultation with local surgeons

Some Problems Require an Urgent Intervention

- Perforated intestines
- Bleeding from inaccessible vessels
- Intracranial bleeding causing mass effect
- Fractures associated with vascular injury

Get Creative

- Assess all potential local or regional resources
- Determine who in your own institution might have clinical skills that can be of value in your situation
- Consider ground transport to nearby facilities that can offer needed services prior to definitive transport
- Don't negate the value of a "partial fix" to a problem

Objectives

- Discuss the literature on hospital transfer times
- Review ATLS primary & secondary assessments
- Discuss extended management options for various injuries

Remember...

- Blue skies have their drawbacks, too…
- Studies showing increasing frequency and severity of trauma associated with clear skies, higher temperatures:

Effect of weather and time on trauma events determined using emergency medical service registry data

Injury, Int. J. Care Injured 46 (2015) 1814-1820

Seasonal, Weather, and Temporal Factors in the Prediction of Admission to a Pediatric Trauma Center

World J Surg (2019) 43:2211–2217

The association of weather, temperature, and holidays on pediatric maxillofacial trauma Laryngoscope Investigative Otolaryngology. 2020;5:846-852.

