

Resuscitation Updates: Optimizing Outcomes From Pediatric Cardiac Arrest

> Beth Wathen MSN RN CCRN Codes Program Coordinator Children's Hospital Colorado

I have no financial relationships with ineligible companies.

Objectives

Incidence/Outcomes

High Quality Resuscitation

Post Arrest Care

Incidence/Outcomes

Incidence of Pediatric CPAs

Out of Hospital Cardiac Arrests ?

> 5000 children in US annually

Topjian AA et al. *Circulation*. 2019;140:e194-e233. DOI: 10.1161/CIR.000000000000697

23,514 pediatric OHCA

National Emergency Medical Services Information System (NEMSIS) Okubo et al. Resuscitation. 2020

In Hospital Cardiac Arrests

- ~ 15,200 events annually
 - 7100 pulseless arrests
 - 8100 non-pulseless events

Holmberg MJ et al. Circulation. 2019:140(17);1398-1408. https://doi.org/10.1161/CIRCULATIONAHA.119.041667

https://www.shutterstock.com/image-photo/newborn-babyhyperbilirubinemia-on-breathing-machine-630739139

Cardiac Arrest Survival in Pediatric and General Emergency Departments 📀

<u>Kenneth A. Michelson, MD</u> ■; Joel D. Hudgins, MD; Michael C. Monuteaux, ScD; Richard G. Bachur, MD; Jonathan A. Finkelstein, MD

- Data from 2009-2014 Nationwide Emergency Department Sample
- Compared pediatric EDs (N=4037)to general EDs(N=42843) Findings:
- Unadjusted survival higher in pediatric EDs than general EDs (33.8% vs 18.9%, p<.001)
- Adjusted odds ratio of survival in peds EDs vs Gen EDs was 2.2
- Survival for traumatic cardiac arrests did not differ

Original Investigation | Emergency Medicine Survival After Intra-Arrest Transport vs On-Scene Cardiopulmonary Resuscitation in Children

Masashi Okubo, MD, MS; Sho Komukai, PhD; Junichi Izawa, MD, DrPH; SunHee Chung, MD; Ian R. Drennan, ACP, PhD; Brian E. Grunau, MD, MHSc; Joshua R. Lupton, MD, MPH, MPhil; Sriram Ramgopal, MD; Thomas D. Rea, MD, MPH; Clifton W. Callaway, MD, PhD

- Data from Resuscitation Outcomes Consortium Epidemiologic Registry (2005 2015)
- 2854 pediatric patients with EMS-treated OHCA
- Primary outcome: survival to hospital discharge

Findings:

- 1892(66.3%) children received intra-arrest transport and 962(33.7%) received continued on scene CPR.
- No significant difference in survival to hospital discharge between the intra-arrest transport group (4.7%) and the continued on-scene CPR group(5.2%)
- For patients< 1yr, intra-arrest transport was associated with lower likelihood of survival to hospital discharge(RR 0.52;95%CI)

Okubo M et al. Survival after intra-arrest transport vs on-scene cardiopulmonary resuscitation in children. JAMA Network Open. 2024;7(5):e2411641.

Survival Trends in Pediatric In-Hospital Cardiac Arrests: An Analysis From Get With The Guidelines–Resuscitation

Saket Girotra, John A. Spertus, Yan Li, Robert A. Berg, Vinay M. Nadkarni, Paul S. Chan and for the American Heart Association Get With the Guidelines-Resuscitation Investigators

- 1031 pediatric in-hospital arrests
- 12 free-standing children's hospitals (2000 2009)

Characteristics/Trends over Time:

- 84.8% asystole or PEA
- More arrests in monitored units
- More arrests in ICUs, on mech ventilation, on pressors

Survival Trends in Pediatric In-Hospital Cardiac Arrests: An Analysis From Get With The Guidelines–Resuscitation

Saket Girotra, John A. Spertus, Yan Li, Robert A. Berg, Vinay M. Nadkarni, Paul S. Chan and for the American Heart Association Get With the Guidelines-Resuscitation Investigators

1031 pediatric in-hospital arrests

12 free-standing children's hospitals (2000 – 2009)

able 4. Risk-Adjusted Rates* of Survival Outcomes by Calendar Year									\frown			
	2000 (n=28)	2001 (n=37)	2002 (n=64)	2003 (n=89)	2004 (n=98)	2005 (n=149)	2006 (n=125)	2007 (n=154)	2008 (n=193	2009 (n=94)	Adjusted RR per 1 y (95% CI)	<i>P</i> for Trend
Survival to discharge, %	14.3	22.5	37.9	31.0	30.8	24.3	44.5	42.0	42.1	43.4	.08 (1.01–1.16)	0.02
Acute resuscitation survival, † 9	42.9	64.3	74.9	55.6	72.3	63.3	79.7	74.6	80.3	81.2	1.04 (1.01–1.07)	0.006
Postresuscitation survival, \$ %	33.3	36.3	49.8	53.1	42.4	38.9	56.4	56.7	52.5	53.6	1.04 (0.98–1.09)	0.17

Girota et al. Circ Cardiovasc Qual Outcomes. 2013.

Trends in Survival After Pediatric In-Hospital Cardiac Arrest in the United States

Mathias J. Holmberg 🖂, Sebastian Wiberg, Catherine E. Ross, Monica Kleinman, Anne Kirstine Hoeyer-Nielsen, Michael W. Donnino, Lars W. Andersen and For the American Heart Association's Get With The Guidelines-Resuscitation Investigators

Survival Trends for Non-Pulseless Events

Improvement has stagnated since 2010

Survival Trends for Pulseless Events

Holmberg MJ et al. Circulation. 2019:140(17);1398-1408. https://doi.org/10.1161/CIRCULATIONAHA.119.041667

Characteristics of Pediatric IHCA

Table 1. Characteristics of Pediatric vs Adult In-Hospital Cardiac Arrest Pediatric patients^{3-5,7} Adult patients^{4,6,7} Characteristic Incidence Approximately 15 200/y in Approximately 292 000/y in United States United States Median: 1-2 y; mean: 3-5 ya Mean: 66 v Age Male sex 50%-55% 60% 85%-90% In monitored 50% In monitored settings^b Hospital settings^b location. Approximately 80% Approximately 30%-35% Airway in place Most with respiratory failure 50%-60% Cardiac: 15%-Cause of and/or progressive shock cardiac arrest 40% respiratory 50% Bradycardia with poor 80% Nonshockable rhythms Initial cardiac perfusion; 40% other (pulseless electrical activity arrest rhythm nonshockable rhythms or asystole) Survival to 45%-50% (40% Among 25% those with pulseless events) discharge Neurological Favorable in 80%-90% of Good functional status in 80% of survivors^d survivors^c outcome

Bradycardia with poor perfusion

- Best outcomes
- However....
 - 30-50% will go on to develop pulseless rhythm
 - These patients have worse outcomes then those initially pulseless

Shockable rhythms:

- Generally better outcome
- However....
 - IF V-fib or V-tach develop as a secondary rhythm after initial pea or asystole rhythm → worse outcome of all

Other Factors Impacting Outcomes

> Med Care. 2016 Jan;54(1):74-80. doi: 10.1097/MLR.000000000000456.

Better Nurse Staffing and Nurse Work Environments Associated With Increased Survival of In-Hospital Cardiac Arrest Patients

> Eur J Pediatr. 2021 Aug;180(8):2513-2520. doi: 10.1007/s00431-021-04082-3. Epub 2021 Apr 26.

Matthew D McHugh ¹, Monica F Rochman, Douglas M Sloane Vinay M Nadkarni, Raina M Merchant, Linda H Aiken; American Heart Association's Get With The Guidelines-Resusc

Survival outcomes of in-hospital cardiac arrest in pediatric patients in the USA

Mohammed Hamzah # 1, Hasan F Othman # 2, Murad Almasri 3, Awni Al-Subu 4, Riad Lutfi 5

Affiliations + expand PMID: 33899153 DOI: 10.1007/s00431-021-04082-3

Failure of Invasive Airway Placement on the First Attempt Is Associated With Progression to Cardiac Arrest in Pediatric Acute Respiratory Compromise

Hannah R. Stinson, MD¹; Vijay Srinivasan, MD²; Alexis A. Topjian, MD, MSCE²; Robert M. Sutton, MD, MSCE²; Vinay M. Nadkarni, MD²; Robert A. Berg, MD²; Tia T. Raymond, MD³; for the American Heart Association Get With the Guidelines-Resuscitation Investigators

How do we get there?

Downloaded from AHA Website: cpr.heart.org. May 2024.

How do we nudge the needle?

High Quality Resuscitation

AHA CONSENSUS STATEMENT

Cardiopulmonary Resuscitation Quality: Improving Cardiac Resuscitation Outcomes Both Inside and Outside the Hospital A Consensus Statement From the American Heart Association

Peter A. Meaney, Bentley J. Bobrow, Mary E. Mancini, Jim Christenson, Allan R. de Caen, Farhan Bhanji, Benjamin S. Abella, Monica E. Kleinman, Dana P. Edelson, Robert A. Berg, Tom P. Aufderheide, Venu Menon, Marion Leary

> 66 Poor-quality CPR should be considered a preventable harm 99

Key Components of High-Quality CPR

- Appropriate ventilation and airway management
- Early Defibrillation if indicated
- High quality chest compressions
- Epinephrine administration
- Treat underlying cause of the arrest

- Avoidance of hyperventilation
- Goal is to optimize myocardial blood flow, maintain oxygenation and CO2 clearance
- Target visible chest rise
- Target 1 breath every 2-3 seconds (20-30 breaths/min)

https://www.shutterstock.com/image-photo/neonatal-reanimationmedical-instruction-young-doctors-1551168578

For OHCA, bag/mask ventilation results in same resuscitation outcomes than endotracheal intubation

Intubation During CPR

Association Between Tracheal Intubation During Pediatric In-Hospital Cardiac Arrest and Survival

Findings:

Tracheal intubation during cardiac arrest compared with no intubation was associated with decreased survival to hospital discharge.

> Anderson LW et al. JAMA 2016;316(17):1786-1797. doi: 10.1001/jama.2016.14486.

Association Between Tracheal Intubation During Adult In-Hospital Cardiac Arrest and Survival

Lars W. Andersen, MD, MPH, PhD^{1,2,3}; Asger Granfeldt, MD, PhD, DMSc²; Clifton W. Callaway, MD, PhD⁴; <u>et al</u>

Findings:

Tracheal intubation within first 15 minutes was associated with a significantly lower likelihood of survival to hosp. discharge compared to no intubation. (16.3% vs 19.4%)

Early Defibrillation

AED vs Defibrillator

Peri-Shock Pauses

Early Defibrillation = Increased Survival

Larsen MP et al. Ann Emerg Med. 1993;22(11):1682-8. doi: 10.1016/s0196-0644(05)81302-2.

Automated External Defibrillators and Survival After In-Hospital Cardiac Arrest

11,695 patients

82% non-shockable rhythm

Table 3. Survival to Dischar	ge ^a							
	/	No. of Survivors/Total No. of Patients (%)						
		AED Used	AED Not Used		Unadjusted RR (95% Cl)	Adjusted RR (95% Cl) ^b	P Value	
All units								
All arrests		734/4515 (16.3)	1383/7180 (19.3)		0.84 (0.78-0.92)	0.85 (0.78-0.92)	<.001	
VF and pulseless VT	$\overline{}$	364/947 (38.4)	450/1132 (39.8)	7	0.97 (0.87-1.08)	1.00 (0.88-1.13)	.99	
Asystole and PEA		370/3568 (10.4)	933/6048 (15.4)		0.67 (0.60-0.75)	0.74 (0.65-0.83)	<.001	
				-				

Chan et al. JAMA, 2010.

ORIGINAL RESEARCH ARTICLE

Association Between Chest Compression Pause Duration and Survival After Pediatric In-Hospital Cardiac Arrest

Figure 2. Association between each 5-second increment in the longest chest compression pause duration and survival outcomes reported as adjusted risk ratios with 95% CIs on a logarithmic scale. ROSC indicates return of spontaneous circulation.

Lauridsen KG et al. Association between chest compression pause duration and survivalafter pediatric in-hospital cardiac arrest. *Circulation*. 2024;149(19):1493-1500.

Chest Compression Fraction

If time that compressions are being delivered while patient is in a no flow state

AHA recommends CCF of at least 80% or >

What does this mean?

- Early compressions
- Limit Interruptions
- Limit peri-shock pauses

Permission Obtained by ZOLL Medical

- Generates positive pressure
- Creates cardiac output
- Forces air out

Permission Obtained by ZOLL Medical

- Negative intrathoracic pressure
- Allows heart to fill (pre-load)
- Air flows in

Idris et al. Circulation. 2012 June 19; 125(24): 3004–3012. doi:10.1161/CIRCULATIONAHA.111.059535. Chest compression rates and pediatric in-hospital cardiac arrest survival outcomes[☆]

Sutton et al. Chest compression rates and pediatric in-hospital lcardiac arrest survival outcomes. Resuscitation. 2018.

Comparing the two-finger versus two-thumb technique for single person infant CPR: A systematic review and meta-analysis

- Meta-analysis of 20 studies
 Results:
- Found 2 thumb technique had mean difference in compression depth of 5.61mm greater than using the two finger technique
- 36% more compressions achieved adequate depth

https://www.shutterstock.com/image-photo/infantassistance-medical-worker-wfp-isolate-1014228094

Millin MG et al. et al. *Resuscitation. 2020;1(148):161-172.* doi: 10.1016/j.resuscitation.2019.12.039.

How do we know if we are doing good CPR?

TABLE 4. Event-Level Compliance: Greater Than 60% of Event's Epochs Compliant With American Heart Association Guideline Targets, *n* (%)

Metrics	Total	< 1 yr	1 to < 8 yr	8 to < 18 yr	p
Events	112 (100)	38 (34)	42 (38)	32 (29)	
CC fraction	79 (71)	20 (53)	34 (81)	25 (78)	< 0.001
CC rate	53 (47)	12 (32)	21 (50)	20 (63)	< 0.02
CC depth ^{ab}	27 (24)	5 (13)	8 (19)	14 (44)	0.004
Absolute		0 (0)	3 (7)		0.3
CC fraction and CC rate	31 (28)	8 (21)	11 (26)	12 (38)	0.3
CC fraction and CC depthab	15 (13)	3 (8)	6(14)	6 (19)	0.006
Absolute ^c		0 (0)	2 (5)		0.24
CC rate and CC depthab	10 (8.9)	2 (5)	2 (5)	6 (19)	0.003
Absolute ^c		0 (0)	1 (2)		1.0
CC fraction, CC rate, and CC depthab	11 (10)	3 (8)	1 (2)	7 (22)	0.40
Absolute ^c		0 (0)	1 (2)		1.0

Niles DE, et al. Peds Crit Care Med. May 2018

How do we know if we are doing good CPR?

ORIGINAL RESEARCH

Poor Concordance of One-Third Anterior–Posterior Chest Diameter Measurements With Absolute Age-Specific Chest Compression Depth Targets in Pediatric Cardiac Arrest Patients

□ Infants: Mean 1/3 APD was 3.2cm (SD, 0.7cm) → AHA Target is 4cm (p < 0.0001)
 □ Children: Mean one-third was 4.3 cm (SD, 1.1cm) → AHA Target is 5cm (p,0.05)

Conclusion:

Poor concordance btwn measured 1/3 APD and age-specific chest compression depth targets, most notably in infants

Presence of pulse during compressions

EtCO2 Waveform Monitoring

CPR Feedback

Hemodynamic-directed CPR

Associations Between End-Tidal Carbon Dioxide During Pediatric Cardiopulmonary Resuscitation, Cardiopulmonary Resuscitation Quality, and Survival

Figure 3. Temporal relationship between ETCO₂ during the first 10 minutes of CPR and return of spontaneous circulation.

Morgan RW, et al. Circulation. 2024

CPR Feedback via the Defibrillator

- Rate and Depth display
- CPR Metronome
- Compression release bar
- CPR Index
- Idle Time Display

Do you use a CPR coach?

Improvement Using CPR feedback

Sutton RM, et al. Resuscitation. 2014 January; 85(1)

Hemodynamic-directed CPR

- Current AHA guidelines propose a simplified evidencedbased approach for both OHCA and IHCA.
 Standard rate/depth
- 2013 AHA Guidelines recommend monitoring a patient's response to resuscitation using hemodynamic data or EtCO2
- Ward versus ICU arrests have shifted
 - o 95% of pediatric arrests in ICU
 - o 50% of ICU patients had arterial monitoring at time of arrest


```
Permission Obtained by ZOLL Medical
```

Coronary Perfusion - Survival after CPR is dependent on myocardial oxygen delivery and blood flow Pressure (CPP) - CPP during relaxation phase is best determinant of blood flow

Goal Arterial Diastolic BP ≥ 25 mmHg in infants

Goal Arterial Diastolic BP ≥ 30 mmHg in children

Association Between Diastolic Blood Pressure During Pediatric In-Hospital Cardiopulmonary Resuscitation and Survival.

- CPCCRN Study: 164 children with CPR > 1 min
- Analyzed arterial waveforms

Findings:

- Mean DBP ≥25 mm Hg in infants and ≥30 mm Hg in children ≥1 year old occurred was associated with:
 - **Survival to Discharge** (adjusted relative risk, 1.7; 95% confidence interval, 1.2-2.6; *P*=0.007)
 - Survival with favorable neurological outcome (adjusted relative risk, 1.6; 95% confidence interval, 1.1-2.5; *P*=0.02)

New ECMO Studies

Extracorporeal cardiopulmonary resuscitation for cardiac arrest: An updated systematic review

Mathias J Holmberg ¹, Asger Granfeldt ², Anne-Marie Guerguerian ³, Claudio Sandroni ⁴, Cindy H Hsu ⁵, Ryan M Gardner ⁶, Peter C Lind ², Mark A Eggertsen ⁷, Cecilie M Johannsen ⁷, Lars W Andersen ⁸ Resuscitation. 2023 Jan:182:109665. doi: 10.1016/j.resuscitation.2022.12.003. CPR quality and outcomes after extracorporeal life support for pediatric In-Hospital cardiac arrest

Brown SR et al. Resuscitation. 2023.

Outcomes of Extracorporeal Cardiopulmonary Resuscitation for In-Hospital Cardiac Arrest Among Children With Noncardiac Illness Categories

Morgann Loaec ^{1 2}, Adam S Himebauch ^{1 2}, Ron Reeder ³, Jessica S Alvey ³, Jonathan A Race ³, Lillian Su ⁴, Javier J Lasa ⁵, Julia C Slovis ^{1 2}, Tia T Raymond ⁶, Ryan Coleman ⁷, Bradley J Barney ³, Todd J Kilbaugh ^{1 2}, Alexis A Topjian ^{1 2}, Robert M Sutton ^{1 2}, Ryan W Morgan ^{1 2}; American Heart Association's Get With The Guidelines-Resuscitation Investigators

Crit Care Med. 2023 Dec 29. doi: 10.1097/CCM.000000000006153.

AHA FOCUSED UPDATE

2019 American Heart Association Focused Update on Pediatric Advanced Life Support

An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

Recommendation—Updated 2019

1. ECPR may be considered for pediatric patients with cardiac diagnoses who have IHCA in settings with existing ECMO protocols, expertise, and equipment (*Class 2b; Level of Evidence C-LD*).

There is insufficient evidence to recommend for or against the use of ECPR for pediatric patients experiencing OHCA or for pediatric patients with noncardiac disease experiencing IHCA refractory to conventional CPR.

ILCOR SUMMARY STATEMENT

2023 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: *Treatment Recommendations (Unchanged From 2021)* We suggest that ECPR may be considered as an intervention for selected infants and children (eg, pediatric cardiac populations) with IHCA refractory to conventional CPR in settings where resuscitation systems allow ECPR to be well performed and implemented (weak recommendation, very low-certainty evidence).

Clinical paper Association of chest compression pause duration prior to E-CPR cannulation with cardiac arrest survival outcomes

- Pedi-RESQ Collaborative
- Included 49 CPA events in review

Findings:

- Long chest compression pauses common in last 5 minutes of CPR prior to cannulation
- Each 5 second incremental increase in pause duration associated with significantly decreased rates of survival and favorable neurological outcome

median: 14.0 (6.3; 29.4)

Fig. 1 – Longest pause duration during the last 5 min of defibrillator-electrode pad recorded CPR prior to E-CPR cannulation for each cardiac arrest event. Dotted lines represent 10-second pause length (maximum pause length recommended by the American Heart Association)²⁰ and 60-second pause length.

Should We Shock and Other Questions

Inappropriate Shock Delivery Is Common During Pediatric In-Hospital Cardiac Arrest

Gray, James M. MD, MEd^{1,2}; Raymond, Tia T. MD³; Atkins, Dianne L. MD⁴; Tegtmeyer, Ken MD^{1,5}; Niles, Dana E. MS⁶; Nadkarni, Vinay M. MD⁶; Pandit, Sandeep V. PhD⁷; Dewan, Maya MD, MPH^{1,5}; for the pediRES-Q Investigators **Gray JM et al.** *Pediatr Crit Care Med.* 2023.

Sodium bicarbonate administration during inhospital pediatric cardiac arrest: A systematic review and meta-analysis

Chih-Yao Chang ¹, Po-Han Wu ¹, Cheng-Ting Hsiao ², Chia-Peng Chang ¹, Yi-Chuan Chen ³, Kai-Hsiang Wu ⁴ Chang CC et al. *Resuscitation*. 2021.

Calcium use during paediatric in-hospital cardiac arrest is associated with worse outcomes

https://www.shutterstock.com/image-photo/neonatalresuscitation-doctors-team-doing-intensive-613125116

AHA SCIENTIFIC STATEMENT

Pediatric Post–Cardiac Arrest Care

https://www.shutterstock.com/image-photo/childintensive-care-unit-after-heart-600246677

Topjian AA et al. Circulation. 2019;140:e194–e233. DOI: 10.1161/CIR.000000000000697

Post Arrest Care

Phase of Injury	Pre-Event	Cardiopu	Imonary Arrest		Post-Cardiac Arrest Syndrome				
Injury Mechanisms		Brain Cerebral hypope Cerebral hypore Cerebral inflamm Impaired cerebro autoregulation Oxidative stress Free-radical-meo Cortical and whi		njury fusion hia and hyperoxia ation vascular iated injury e matter injury			Systemic Ischemia/Reperfusion Hypoxemic-hypotensive perfusion Free-radical-mediated reperfusion injury SIRS Adrenal Suppression 		Persistence of Precipitating Pathology
Clinical Symptoms			Coma, Cerebral (Myoclonus, Er	dema, Seizures, cephalopathy	Hypoten and sys cardiac Pulmon	sion, LV & RV diastolic tolic dysfunction, Low output, Arrhythmias, ary edema, Recurrent arrest	Coagulopathy, Hy Pyrexia, Hypow Hyperglycemia, Imp oxygen utilization, Inf organ dysfun	potension, olemia, aired tissue ection, Multi- ction	Cognitive impairment, Spasticity, Sympathetic hyperarousal
Monitoring				 Pulse oximetry Capnography Cardiac teleme Blood pressure monitoring Temperature Urine output 	try	Organ perfusion (ele Ventilation (PaCO ₂ o Acid-base status (b) Inflammation and im Coagulation; Kidney Echocardiography; , (consider electrop CNS Injury (cEEG) CNS imaging (if CNS	Introlytes) or end-tidal CO ₂) lood gases; (actate) fection (CXR, CBC) / function Arrhythmia monitoring ihysiology consultation) S cause suspected)	 Cognitiv and phy assess 	e, emotional, sical disability ients
Treatment Interventions		CPR Early transport care certer Proactive n support of	port o pediatric tertiary nonitoring and organ function	 Administer oxygen Vasopressors Parenteral fluids Treat proximal cause of arrest 	Targ 36 Norr Norr Avoi Set I Mair Trea Scre Mon	eted temperature manager 3°C-37.5°C) moxia (94% — 99%) mocapnia (PaCO ₂ 35-45 m d hypoxermia, hyerperoxia nemodynamic goals; keep ntain normoglycemia t seizures (clinical and elec en for ECMO itor for and treat AKI; seda	ment (32°C–34°C or m Hg) I, hypocapnia and hypero SBP > 5th %ille trographic) tion as needed	• Ea • Co ret ser • Tre hyr	ly mobilization nsult abilitation vices at sympathetic perarousal
Prognostic Factors	 Age > 1 yr Preexisting condition Interventions in place Cause of arrest Night / weekends Congenital heart disease Pulmonary artery hypertension 	CPR durati Witnessed Bystander (EMS respon- Calcium & E Shorter time Non-shocka Intubation CPR quality ECPR	on CPR Isse time Sicarbonate administration Sicarbonate administration able rhythm	Lack of pupillary responsiveness Abnormal motor response to pain Seizures Early hypotension Substantially abnormal EEG background Elevated blood glucose Elevated blood glucose Neuron-specific enolase, S100B					

Topjian AA et al. Circulation. 2019;140:e194–e233. DOI: 10.1161/CIR.00000000000697

Priorities for Post Arrest Care

https://www.shutterstock.com/image-photo/pediatricicu-ecg-monitor-on-foreground-138153896 Early hemodynamic optimization
 Optimize ventilation and oxygenation
 Treatment of persistent precipitating pathophysiology
 Targeted temperature management
 Control for seizures/neuro monitoring
 Glucose control

Management of multi-organ dysfnction

- Compared effectiveness of TTM at 32-36° to no TTM target or a different target
- Included 12 studies involving > 2000 patients

Conclusions:

- No statistical improvement in short or long term survival or long term survival with good neuro outcome
- Inconclusive evidence to either support or refute the use of TTM at 32–34°

Buick JE et al. *Resuscitation* 139 (2019) 65-75. https://doi.org/10.1016/j.resuscitation.2019.03.038

AHA FOCUSED UPDATE

2019 American Heart Association Focused Update on Pediatric Advanced Life Support

An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

Duff et al. Circulation. 2019

AHA SCIENTIFIC STATEMENT

Pediatric Post–Cardiac Arrest Care

A Scientific Statement From the American Heart Association

Topjian et al. Circulation. 2019

It is reasonable to use targeted temperature management of 32°C to 34°C followed by 36°C to 37.5°C, or to use targeted temperature management of 36°C to 37.5°C, for pediatric patients who remain comatose after resuscitation from out-of-hospital cardiac arrest or in-hospital cardiac arrest.

Resuscitation Improvement

Prevention Bundles

CPR Data

12:00

AHA Comparison Chart: AHA Data: Gold Standard: Our Team: <1 min Initiation of chest compressions

Depth: Adult Target (2.0 - 2.4 in)

CPR Performance

CPR event summary

11:45

© Children's Hospital Colorado 2024 All rights reserved

12:30

12:15

Initiation of onest compressions	· · · · · · · · · · · · · · · · · · ·	▼		
Compressions rate	100-120 bpm	\checkmark		
Time to 1st Dose Epi	<5 min	\checkmark		
Correct Zoll pads placed?	ON	\checkmark		
Time to 1st Defibrillation	<2 min	N/A		
ETCO2	ON	On and off 🗹		
	> 15 mmHg			
	ON			
DBP	<1 year: > 25 mmHg	N/A		
	>1 year: > 30mmHg			
Time off chest	<10 seconds			
CPR coach designated role?	YES	\checkmark		
quality Average manual depth Average manual rate Average release velocity				

	Monthly CPR Trend	Average compression fraction	Average preshock pause	Average postshock pause	Compression quality	Average manual depth	Average manual rate	Average release velocity	
	Targets	≥ 80%	≤ 5 secs	≤ 5 secs	≥ 60%	1.80 to 2.20 in	100 to 120 cpm	N/A 😧	
	Oct 2023								© Children's Hospital Colorado 2024 All rights reserved
	Nov 2023								
	Dec 2023								
	Jan 2024								
	Feb 2024								2 B
	Mar 2024								
1	Apr 2024								
1	May 2024								
V	Jun 2024	77.11%	0.00	0.00	28.20%	1.63	108.91	234.47	$\gamma - \gamma - \gamma$
	Jul 2024	96.92%	0.00	0.00	23.75%	1.60	115.47	226.14	
	Aug 2024	85.20%	0.00	0.00	21.13%	1.49	114.62	241.30	
	Sep 2024	81.84%	0.00	0.00	8.12%	1.76	120.79	251.20	© Children's Hospital Colorado 2024 All rights reserved
	Oct 2024								

Downloaded from AHA Website: cpr.heart.org. May 2024.

What Should We Measure?

- OHCA and IHCA Rate
- ROSC and Survival to discharge
- CPR Quality metrics
 - Chest compression fraction
 - o Perishock pauses
 - o Rate and depth targets

- Team performanceUse of CPR coach
- Compliance with Post Arrest Care (for OHCA and IHCA)
- Survival with good neuro outcome

Final Thoughts

Final thoughts.....

- Outcomes have improved but there is much work to do
- Know the science and incorporate it into your event reviews and training
- Use feedback to guide provision of high quality CPR
- Post resuscitation care is critical in the quest to optimize outcomes
- Gather your team, know your data, share your data and make improvement goals

© Children's Hospital Colorado 2024 All rights reserved

Anderson LW et al. Association between tracheal intubation during pediatric in-hospital cardiac arrest and survival. JAMA 2016;316(17):1786-1797. doi: 10.1001/jama.2016.14486.

Anderson LW et al. Association between tracheal intubation during adult in-hospital cardiac arrest and survival. JAMA. 2017;317(5):494-506.

Berg RA et al. Association between diastolic blood pressure during pediatric in-hospital cardiopulmonary resuscitation and survival. *Circulation*. 2018;137(17):1784-1795.

Chan PS et al. Automated external defibrillators and survival after in-hospital cardiac arrest. JAMA. 2010;304(19):2129-36.

Chang CY et al. Sodium bicarbonate administration during in-hospital pediatric cardiac arrest: A systematic review and meta-analysis. *Resuscitation*. 2021;162:188-197.

Cashen K et al. Calcium use during paediatric in-hospital cardiac arrest is associated with worse outcomes. *Resuscitation*. 2023;185:109673.

Cheskes et al. Perishock pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest. Circulation. 2011;124(1):58-66.

Girota et al. Survival trends after in-hospital cardiopulmonary arrest. Circ Cardiovasc Qual Outcomes. 2013.

Gray JM et al. Inappropriate shock delivery is common during pediatric in-hospital cardiac arrest. *Pediatr Crit Care Med*. 2023;24(8):e390-e396.

Haskill et al. Association between survival and number of shocks for pulseless ventricular arrhythmias during pediatric in-hospital cardiac arrest in a national registry. *Resuscitation*. 2024;198(Supp 1):110200.

Holmberg MJ et al. Trends in survival after pediatric in-hospital cardiac arrest in the United States. Circulation. 2019:140(17);1398-1408. https://doi.org/10.1161/CIRCULATIONAHA.119.041667

Idris et al. The relationship between chest compression rates and outcomes from cardiac arrest. Circulation. 2012 June 19; 125(24): 3004–3012.

Larsen MP et al. Ann Emerg Med. 1993;22(11):1682-8. doi: 10.1016/s0196-0644(05)81302-2.

Lauridsen KG et al. Association between chest compression pause duration and survival after pediatric in-hospital cardiac arrest. Circulation. 2024;149(19):1493-1500.

Lauridsen KG et al. Association of chest compression pause duration prior to E-CPR cannulation with cardiac arrest survival outcomes. Resuscitation. 2022;177:85-92.

Meany PA, et al. Cardiopulmonary resuscitation quality: Improving cardiac resuscitation outcomes both inside and outside the hospital. *Circulation*. 2013: 128(4).

Michaelson KA, et al. Cardiac arrest survival in pediatric and general emergency departments. Pediatrics. 2018;141(2):e20172741.

Morgan RW, et al. Associations between end-tidal carbon dioxide during pediatric cardiopulmonary resuscitation, cardiopulmonary resuscitation quality, and survival. *Circulation*. 2024;149(5):367-378.

Morgan et al. Pediatric in-hospital cardiac arrest and cardiopulmonary resuscitation in the United States. JAMA Peds. 2021:175(3);293-302

Niles DE, et al. Characterization of Pediatric In-Hospital Cardiopulmonary Resuscitation Quality Metrics Across an International Resuscitation Collaborative. *Peds Crit Care Med*. May 2018;19(5):421-432.

Okubo M et al. Survival after intra-arrest transport vs on-scene cardiopulmonary resuscitation in children. JAMA Network Open. 2024;7(5):e2411641.

Ong et al. Poor concordance of one-third diameter measurements with absolute age-specific chest compression depth targets in pediatric cardiac arrest patients. *Journal of the American Heart Association*. 2023;12:e028418

Sutton et al. Chest compression rates and pediatric in-hospitalcardiac arrest survival outcomes. Resuscitation. 2018.

Topjian AA, et al. Pediatric post arrest care: A scientific statement from the American Heart Association. Circulation. 2019;140:e194-e233.

Topjian AA et al. Pediatric Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. *Circulation*. 2020:142(16);S469-S523.

