Pediatric Assessment

Kelly Reichert, MS RN CCRN
Professional Development Specialist
Outreach Education

No Disclosures

Objectives

Summarize the differences of pediatric vs adult physiology impacting patient assessment and triage

Develop systematic approach to pediatric assessment and triage

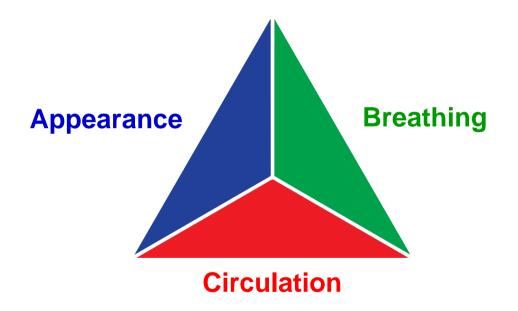
Report escalation of pediatric emergencies and knowledge of resources

Discuss strategies to better support pediatric patients during medical care

Kids are not small adults!

Adults

Kids


Pediatrics vs Adults

Differences	Implications
Greater BSA to body weight	Prone to hypothermia, dehydration
Higher metabolic rate	Prone to hypoxia, hypoglycemia
Higher fluid requirements	Prone to dehydration
Good vasculature and heart	Don't see hypotension until late
Babies are nose breathers	Can't breathe with secretions
Thin chest wall, weak IC muscles	Takes more effort to breathe

Sick or Not Sick: Pediatric Assessment Triangle

Appearance - TICLS

TONE - moving? limp?

INTERACTIVENESS -alert? not following?

CONSOLABILITY - by caregiver?

LOOK/GAZE - observant?

SPEECH/CRY - high pitched, hoarse, muffled?

Photo: Children's Hospital Colorado

Breathing – Rate and Effort

Abnormal positioning - extended neck, head bobbing, or tripod?

Abnormal airway sounds:

- Stertor Secretions (both)
- Stridor Upper (inspiratory)
- Wheeze Lower (expiratory)

Nasal flaring

Retractions subcostal, intracostal, sternal, tracheal tug

Photo: Pearson

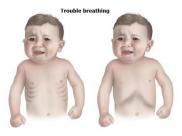


Photo: Up To Date

Photo: Stanford Medicine

Circulation

Skin color:

Early: Pale

Late: Mottled, Cyanotic

Bruising or purpura?

Mental status - LOC changes

Photo: BMJ

Photo: ResearchGate

Photo: Consultant 360

Putting together the ABCs

Concern(s)	Meaning	Interventions
Breathing	Respiratory Distress	Positioning, oxygen, suction, consider meds as applicable
Appearance + Breathing	Respiratory Failure	Positioning, oxygen (mask), suction, get advanced airway ready
Appearance + Circulation	Shock	Oxygen (NRB), access (IV/IO), labs, fluids, reduce oxygen demand / treat cause of shock
Appearance	Neurologic / Metabolic	Check blood sugar, labs, oxygen as needed, determine and treat cause
All 3 (ABC)	Cardiorespiratory Failure	Position, oxygen (bag mask), advanced airway, compressions

What's Next?

Length-Based Tape

RED to head

Kilogram (kg) weight in pediatrics

- Medication doses
- Equipment

Weight	Laryn- goscope Blade	(mm) +0.5 uncuffed	ET Tube Depth (cm)	Suction Cath. (Fr)	IV (ga)	NG (Fr)	Urinary Cath. (Fr)
3-5 kg	1 straight	3.0 Cuffed	3 kg 9-9.5 4 kg 9.5-10 5 kg 10-10.5	8	22-24	5-8	5
8-9 kg	1Straight	3.0 Cuffed	10.5-11	8	22-24	5-8	8
10-11 kg	1Straight	3.5 Cuffed	11-12	10	20-24	8-10	8-10
12-14 kg	2 Straight	4.0 Cuffed	13.5	10	18-22	10	10
15-18 kg	2 Straight	4.5 Cuffed	14-15	10	18-22	10	10-12
19-23 kg	2 Straight or Curved	5.0 Cuffed	16.5	10	18-20	12-14	10-12
30-36 kg	3 Straight or Curved	6.5 Cuffed	18.5-19.5	10-12	16-20	16-18	12

Photo: Armstrong Medical

	PUF	RPLE	
SEIZURI		ICP	
Lorazepam (2 mg/mL)	1 mg (0.5 mL)	3% Saline	21-53 mL
(4 mg/mL)	1 mg (0.25 mL)	Mannitol (20% 0.2 g/mL)	10 g (50 mL)
Diazepam IV (5 mg/mL)	2 mg (0.4 mL)	(25% 0.25 g/mL)	10 g (40 mL)
Phenobarbital (65 mg/mL)	210 mg (3.2 mL)	Furosemide (10 mg/mL)	10 mg (1 mL)
(130 mg/mL)	210 mg (1.6 mL)	FLUIDS	
Phenytoin (50 mg/mL)	210 mg (4.2 mL)	Fluid Bolus	
Fosphenytoin (50 mg PE/mL)	210 mg PE (4.2 mL)	Crystalloid (NS or LR)	210 mL
Levetiracetam (100 mg/mL)	525 mg (5.25 mL)	Colloid/blood	105 mL
OVERDOSE/HYPO		Maintenance	
D ₁₀ W (0.1 g/mL)	5.25 g (52.5 mL)	D5 1/2 NS + 20 mEq KCL/L	43 mL/HR
D ₂₅ W (0.25 g/mL)	5.25 g (21 mL)	PAIN	
Naloxone (1 mg/mL)	1 mg (1 mL)	Fentanyl (50 mcg/mL)	10 mcg (0.2 ml.)
(0.4 mg/mL)	1 mg (2.5 mL)	Morphine (2 mg/mL)	1 mg (0.5 mL)
Flumazenil (0.1 mg/mL)	0.1 mg (1 mL)	(4 mg/mL)	1 mg (0.25 mL)
Charcoal (25 g/120 mL)	10 g (50 mL)		
Glucagon (1 mg/mL)	0.5 mg (0.5 mL)		
EQUIPME	NT	EQUIPME	
*E.T. Tube 4.01	Uncuffed/*3.5 Cuffed	Oxygen Mask	Pediatric NR
E.T. Insertion Length	11-12 cm	*ETCO ₂	Pediatr
Stylet	6 French	*Urinary Catheter	8-10 Frenc
*Suction Catheter	8 French		14-20 Frenc
Laryngoscope	1-1.5 Straight		8-10 Frenc
BVM	Child	Vascular Access	20-24 G
Oral Airway	60 mm	Intraosseous (IO)	15 G
*Nasopharyngeal Airway	18 French		Chil
*LMA	2	*May not be included in Or	

A FULL Set of Vital Signs

Pediatric "normal" varies by age

Think about order!

Heart rate

Respiratory rate - a full minute!

Saturations

Temperature

Blood pressure

OneCall 720-777-3999 | Toll Free 1-800-525-4871

PEDIATRIC VITAL SIGN NORMS

	шв	HR Respiratory Rate (Breaths/min)	Blood Pressure		Mean Arterial	
Age			Systolic (mm Hg)	Diastolic (mm Hg)	Pressure (mm Hg)	
Birth-28 days	100-205	40-60	67-84	35-53	45-60	
1-12 months	100-180	30-53	72-104	37-56	50-62	
1-3 yrs.	98-140	22-37	86-106	42-63	49-62	
3-5 yrs.	80-120	20-28	89-112	46-72	58-69	
5-11yrs.	75-118	18-25	97-115	57-76	66-72	
12-18 yrs.	60-100	12-20	110-131	64-83	73-84	

MKTG-868 7e e96p-16-2024-

Hate the 60s

- Heart Rate 60 = bradycardia
- Respiratory Rate 60 = tachypnea
- Systolic Blood Pressure 60 = hypotension/uncompensated shock
- BGL 60 = borderline
 - 40-60 hypoglycemic

PALS

Vital Signs in Children

These 3 tables are reproduced or modified from Hazinski MF, Children are different. In: Nursing Care of the Critically III Child: 3rd ed. Mosby: 2013:1-18, copyright Elsevier.

Normal Heart Rates*

Age	Awake rate	Sleeping rate (beats/min)
Neonate	100-205	90-160
Infant	100-180	90-160
Toddler	98-140	80-120
Preschooler	80-120	65-100
School-age child	75-118	58-90
Adolescent	60-100	50-90

[&]quot;Always consider the patient's normal range and clinical condition. Heart rate will normally increase with fever or stress.

Normal Respiratory Rates*

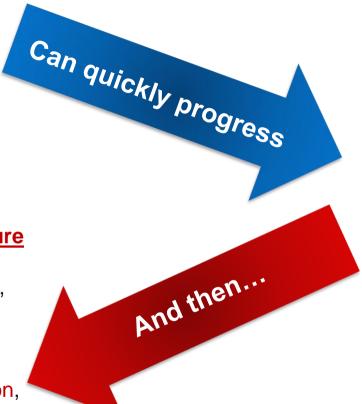
Age	Rate (breaths/min)
Infant	30-53
Toddler	22-37
Preschooler	20-28
School-age child	18-25
Adolescent	12-20

*Consider the patient's normal range. The child's respiratory rate is expected to increase in the presence of fever or stress.

Data from Fleming S et al. Lancet. 2011:377/9770):1011-1018.

Respiratory Distress

Tachypnea


↑ Respiratory Effort

Abnormal Airway Sounds

Retractions

Accessory muscle use

Abdominal breathing

Cardiorespiratory Failure Early

Tachycardia, cool/pale, decrease UOP

<u>Late</u>
Bradycardia, hypotension, cyanosis, unresponsive

Pain Scoring

Use the correct tool

 Pain is an abstract concept, hard for kids to number

Kids can withdraw from surroundings when in pain = misunderstandings

Treat pain:

Fentanyl IV 1mcg/kg
 OR Intranasal 2mcg/kg

CRIES -

32-60 weeks gestation

CRIES Scale					
0 1 2					
Crying	None	High-pitched	Inconsolable		
Requires O ₂	None	<30% FiO₂ needed	>30% FiO ₂ needed		
Increased vital signs	Normal HR & BP	Increased HR & BP <20%	Increased HR & BP >20%		
Expression	Normal	Grimace	Grimace & grunt		
Sleeplessness	None	Wakes frequently	Awake constantly		

FLACC -

< 3 years or nonverbal

FLACC Score				
CATEGORY	0 POINTS	1 POINT	2 POINTS	
Face	Disinterested	Occasional grimace, withdrawn	Frequent frown, clenched jaw	
Legs	No position or relaxed	Uneasy, restless, tense	Kicking or legs drawn up	
Activity	Normal position	Squirming, tense	Arched, rigid, or jerking	
Cry	No crying	Moans or whimpers	Constant crying, screams or sobs	
Consolability	Content, relaxed	Distractible	Inconsolable	

FACES -

3 - 12 years

Wong-Baker FACES Pain Rating Scale

Supporting Pediatric Patients

"We owe it to the future not to harm our children in their hearts and minds while we cure their diseases and repair their broken bones."

Pate, JT et al. (1996)

Child Development Considerations

- Younger children
 - Separation anxiety
 - Involve caregivers (and patient as able)
 - Toddlers offer choices
- School age children
 - Fear loss of competence or control
 - Involve the patient helpers, writers, give them a job!
- Teenagers
 - Vague in complaints and needs
 - Fear being different
 - Normalize experience

Preparation using their senses

Some kids say it sounds like... feels like... smells like...

See:

- Soft straw (IV)
- Bright lights (exam lights)

Hear:

- Loud noises like construction (MRI)
- Popping like a soda can opening (J-tip)

Taste:

- Salty (saline)
- Sprite without bubbles (oral contrast)

Feel:

- Cold, wet (soap)
- Tight hug/squeeze (tourniquet)
- Quick pinch/poke (IV)

Smell:

- The ocean (saline)
- Hand sanitizer (Chloraprep)

Child Development Considerations

AVOID: TRY:

"Don't move while I do this"

"Your job is to hold as still as you can"

"The IV will hurt"

"You'll feel a pinch/poke"

"It will burn"

"It might feel warm / cool going in"

"It will taste bad"

"It might taste bitter"

"Show me how brave you are / what a big kid you are"

"Remember, you job is to be as still as you can. It's OK to cry. I know this is scary."

Comfort Positioning

Alternative Focus / Distraction

- Tablet / smartphone
- Search and Find Books
- Stress balls
- Pinwheels
- Music / singing
- Deep breathing
- Grounding activities counting

Grounding Activities

The 5-4-3-2-1 Grounding Technique

Ease your state of mind in stressful moments.

Acknowledge 5 things that you can see around you.

Acknowledge 4 things that you can touch around you.

Acknowledge 3 things that you can hear around you.

Acknowledge 2 things that you can smell around you.

Acknowledge 1 thing that you can taste around you.

#DeStressMonday

DeStressMonday.org

PANDA UP

P = Prepare Use prep supplies and treatment room, educate family

A = Anxiety Reduction Implement relaxation methods and coping plan

N = **Numb** *Use* numbing agents prior to procedures; sucrose for infants

D = **Distract** Apply methods such as vibration tool and alternative focus

A = Attitude Maintain a calm, positive attitude

U = Use One Person's Voice *Understand everyone's role*

P = Position *Use comfort positioning*

Systematic Approach

Pediatric Airway Challenges

Same: C-spine stabilization, jaw thrust if needed

Large head, short neck under 2 yo

Larger tongue, larger floppy epiglottis, cricoid cone shaped, small diameter

"Built-in" obstruction

Infants - obligate nose breathers

Quick distress with secretions

Photo: Columbia Reports

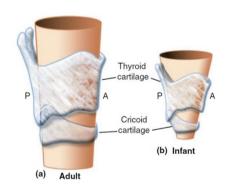


Photo: Open Anesthesia

Pediatric Airway Interventions

Shoulder Roll / Sniffing Position

Head tilt chin lift

E-C clamp technique

Suction - use saline!

"Deep suctioning"

Photo: Life with Gremlins

ABCDE

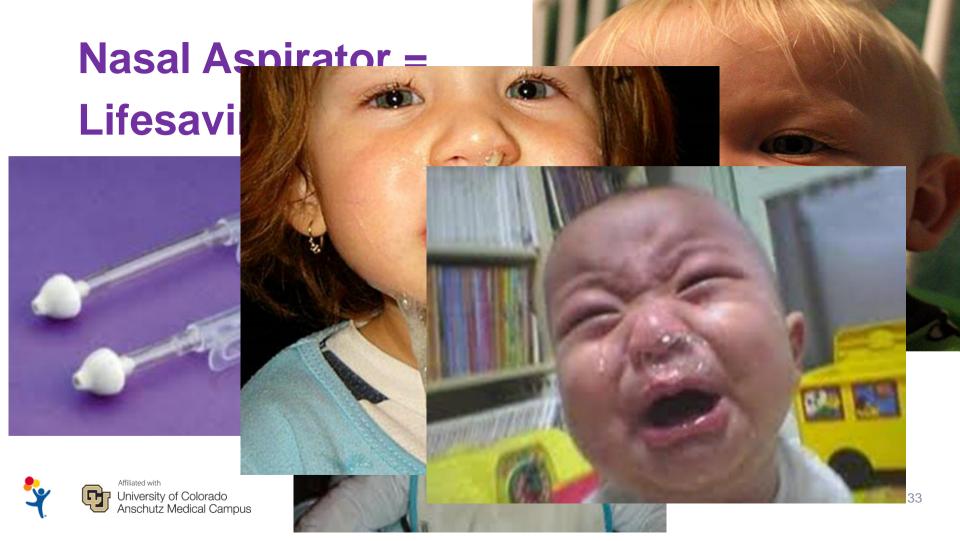


Photo: UCD Emergency Medicine

Photo: Anaesthesia, Pain & Intensive Care

ABCDE

Pediatric Breathing Challenges

Same: Intubate at GCS 8, significant respiratory failure, compensated shock, laryngeal reflex, impending herniation

Thin chest wall, cartilaginous sternum/ribs, poorly developed intercostal muscles

Rapid RR, rely on diaphragm/abdominal muscles for respirations

Children have smaller lung capacity and higher oxygen consumption

Increased RR first sign of distress, hypoxia risk

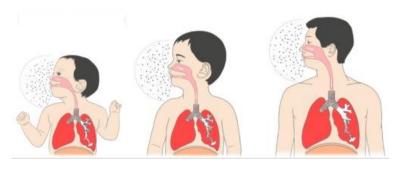


Photo: Science Direct

Age	Rate
Infant	30-53
Toddler	22-37
Preschooler	20-28
School Aged	18-25
Adolescent	12-20

Pediatric Breathing Interventions

Upper vs lower airway

Stridor vs wheeze

Airway adjuncts - nasal and oral

Bring a bunch to the bedside

Oxygen - cannulas and masks

NO "blow by"

Photo: Serphinity

Photo: Intersurgical

ABCDE

Nasal canula -

Min: low

Max: Infant 3L,

Pediatric 6L

Simple mask -

Min: 6L

Max: 10L

Non-Rebreather -

Min: 10L (keep bag inflated with breaths)

Max: 15L

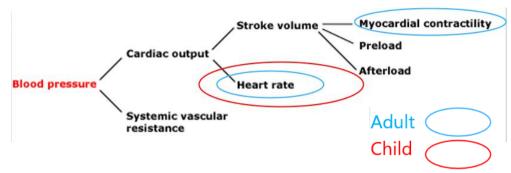
Photo: Children's Health Ireland

Photo: Grayline

Pediatric Circulation Challenges

Capillary refill

More dependent on room-temp


Blood pressure - repeat q15 min

Kids compensate... hypotension is late

End organ function

- Mental status parents may notice first!
- Ask about wet diapers

Age	Systolic BP
Term Neonate (0-28 days)	<60
Infants (1-12 months)	<70
Children (1-10 years)	<70 + (age in years x 2)
Children > 10 years	<90

Source: AHA / PALS

Pediatric Circulation Interventions

ABCDE

IOs:

Stabilize leg, slight external rotation

Proximal tibia: tibial tuberosity flat, 1-3cm below knee joint

Rapid Fluid Administration:

3-way connector

Pull/push: pull from

IVF bag into syringe,
push in from syringe

Pediatric Shock

Identification - 3 things at once

- Oxygen NRB
- Monitor keep cycling BP!
- Access IV/IO, don't delay

20 ml/kg isotonic boluses - load them up

Hepatomegaly, rales/crackles - go slower

"Do not delay inotropes" - PIV, double up

- Epinephrine
- Norepinephrine
- Dopamine

Consider hydrocortisone

0 min

5 min

Recognize decreased mental status and perfusion.

Begin high flow O₂ and establish IO/IV access according to PALS.

If no hepatomegaly or rales / crackles then push 20 mL/kg isotonic saline boluses and reassess after each bolus up to 60 mL/kg until improved perfusion. Stop for rales, crackles or hepatomegaly. Correct hypoglycemia and hypocalcemia.

Begin antibiotics.

15 min

Fluid refractory shock?

Begin peripheral IV/IO inotrope infusion, preferably Epinephrine 0.05 – 0.3 µg/kg/min Use Atropine / Ketamine IV/IO/IM if needed for Central Vein or Airway Access

Titrate Epinephrine 0.05 – 0.3 μg/kg/min for Cold Shock.

(Titrate central Dopamine 5 – 9 μg/kg/min if Epinephrine not available)

Titrate central Norepinephrine from 0.05 μg/kg/min and upward to reverse Warm Shock.

(Titrate Central Dopamine ≥ 10 μg/kg/min if Norepinephrine not available)

60 min

Catecholamine-resistant shock?

If at risk for Absolute Adrenal Insufficiency consider Hydrocortisone.

Use Doppler US, PICCO, FATD or PAC to Direct Fluid, Inotrope, Vasopressor, Vasodilators

Goal is normal MAP-CVP, ScvO₂ > 70%* and Cl 3.3 – 6.0 L/min/m²

Algorithm of management of shock in infants and children by American College of Critical Care Medicine

Compensated Shock

Possibly hours

Potentially minutes

Case Study

Sam

- 5 days old
- Uncomplicated pregnancy and birth, first baby
- Presents with poor feeding since last night, pale, no wet diapers overnight, fast breathing, seems cold

Pediatric Assessment Triangle

Appearance

Breathing

Situational Awareness

Alterations in Appearance (lethargy)
Breathing (tachypnea) and
Circulation (cool extremities)

A + B + C = Cardiorespiratory Failure

On the monitor, focused assessment

Monitor (cycle that BP):

T 36.3

HR 190

BP 52/30

RR 66

Sats 92

Further Assessment:

Gen: lethargy, pale, mild hypotonia

Skin: mottled, cold, 4s cap refill

Cardiac: tachycardic, weak pulses

Respiratory: tachypnic, mild

retractions

Abdomen: soft, non-distended

Next Steps

Differential?

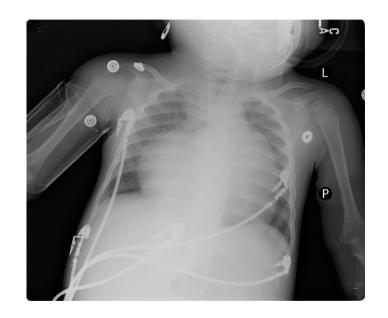
 Sepsis, hypovolemia, CCHD, adrenal or metabolic issue

High flow O2

Access - IV/IO

Labs

Glucose


Fluids

Dose for 4kg baby

Infant Cardiogenic Shock

- What if sat on L toe was 75?
- Other queues:
 - Narrow BP
 - Crackles, hepatomegaly adjust fluid 5ml/kg
 - Mottled, cool
- Prostaglandin (PGE1) 0.05 mcg/kg/min until duct dependent defect excluded
 - PDA closing can uncover coarc or other things...
 - Pulses and BP in all 4 extremities, call cardiology
 - What side effect do you anticipate?

Pediatric Disability – Da Brain, Dextrose

Same: Mental status - Awake Verbal Pain Unresponsive

Fontanelles! (6-18 months)

Mental status - what's normal?

Dextrose - less liver capacity to store glycogen

Head trauma - majority of pediatric trauma deaths

Think about ingestion! - if they can crawl...

Modified Glasgow Coma Scale for Infants and Children

	Child	Infant	Score
Eye opening	Spontaneous	Spontaneous	4
	To speech	To speech	3
	To pain only	To pain only	2
	No response	No response	1
Best verbal response	Oriented, appropriate	Coos and babbles	5
	Confused	Irritable cries	4
	Inappropriate words	Cries to pain	3
	Incomprehensible sounds	Moans to pain	2
	No response	No response	1
Best motor response*	Obeys commands	Moves spontaneously and purposefully	6
	Localizes painful stimulus	Withdraws to touch	6 5 4
	Withdraws in response to pain	Withdraws to response in pain	4
	Flexion in response to pain	Abnormal flexion posture to pain	3
	Extension in response to pain	Abnormal extension posture to pain	2
	No response	No response	1

Pediatric Disability Interventions

Check GLUCOSE!

Rule of 50s:

 $50 = D50 \times 1 ml/kg$

 $50 = D25 \times 2ml/kg$

 $50 = D10 \times 5ml/kg$

 $50 = D5 \times 10 \text{ml/kg}$

Suspected Increased ICP:

Head midline, elevate 30

Maintain normotension

Do not excessively hyperventilate - EtCO2 35

Consider Mannitol, Hypertonic

Sedation

Case Study

Elin

- 9 years old, no PMHx
- Hard hit/fall at soccer game, no LOC
- Presents with parents 3 days later: tired, irritable, didn't recover well from recent cold, vomiting, headache
- You notice she is thin, very tired, dry mucous membranes, deep/labored breathing

Pediatric Assessment Triangle (plus vitals):

Appearance

Breathing

Focused assessment

Vitals:

T 36.5

HR 104

BP 70/45

RR 25

Sats 91

Further Assessment:

Sleepy, awakens to painful stimuli

Sluggishly reactive 4-5mm pupils

Minimally interactive

Clear breath sounds

Cool extremities, poor pulses

Situational Awareness

Alterations in Appearance (lethargy, not interactive)

Circulation (cool extremities, poor pulses)

A + C = Shock

Concern(s)	Meaning	Interventions
Breathing	Respiratory Distress	Positioning, oxygen, suction, consider meds as applicable
Appearance + Breathing	Respiratory Failure	Positioning, oxygen (mask), suction, get advanced airway ready
Appearance + Circulation	Shock	Oxygen (NRB), access (IV/IO), labs, fluids, reduce oxygen demand / treat cause of shock
Appearance	Neurologic / Metabolic	Check blood sugar, labs, oxygen as needed, determine and treat cause
All 3 (ABC)	Cardiorespiratory Failure	Position, oxygen (bag mask), advanced airway, compressions

Next Steps

What's on your differential?

- Hypovolemic shock
- Something neurologic/metabolic? Ingestion?

Oxygen (NRB)

Access, fluid

• 20/kg NS

Glucose? Labs?

• 550, pH 7.1, urine +ketones

Pediatric DKA is different

Do NOT bolus insulin, esp with s/s cerebral edema

Pediatric DKA

ASAP:

- 2 PIVs, NPO, CR monitor, neuro checks q1 hr
- NS 10-20/kg over 1 hour, no more than 40/kg
- Check electrolytes
- DO NOT BOLUS INSULIN
- Start regular insulin 0.1 unit/kg/hr
 - Start at 0.05 if signs of cerebral edema

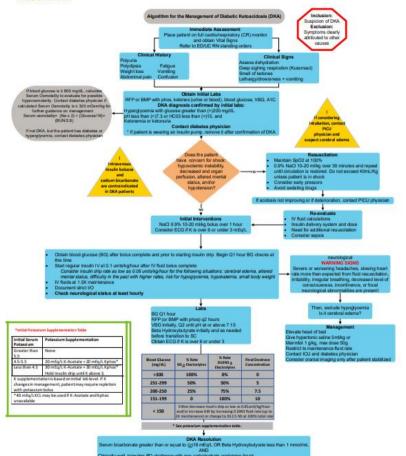
BACKGROUND | DEFINITIONS

Diabetic ketoacidosis (DKA) is a life-threatening medical emergency requiring immediate evaluation and treatment. Please notify the diabetes physician on call through One Call for all patients with known or suspected DKA.

Diabetic ketoacidosis (DKA) is a life-threatening condition. Almost 1 in \$100 children with DKA will develop clinically significant cerebral edema, which has a mortality rate of 21-24%. Those with severe DKA have a much higher mortality and risk of complications. Meticulous attention to the details of therapy and the child's clinical course can decrease this risk. A patient who is unresponsive to vocal commands or presents with hypotension is rare and requires immediate critical care in a hospital. Urgent critical care and diabetes consultation should be obtained.

DKA is defined by:

- · Hyperglycemia with glucose greater than 200 mg/dL, and
- pH less than 7.3 or HCO₃- less than 15 and
- Ketonemia or ketonuria



CLINICAL PATHWAY

Contact diabetes physician for doses and timing "See page 7 for transition algorithm

ABCDE

Pediatric Exposure Interventions

Clothes off - look under diaper too

Then bundle them back up

Aim for normothermia

Warm: Blankets, Warmed IVF, Bair Hugger

Cool: Remove layers, Wet washcloths,

Cooling blankets, antipyretics

Photo: Wyoming Department of Health

TEN-4-FACESp

Bruising Clinical Decision Rule for Children < 4 Years of Age

When is bruising concerning for abuse in children <4 years of age? If bruising in any of the three components (Regions, Infants, Patterns) is present without a reasonable explanation, strongly consider evaluating for child abuse and/or consulting with an expert in child abuse.

TEN Torso | Ears | Neck

FACES

Frenulum Angle of Jaw Cheeks (fleshy part) Eyelids Subconjunctivae

4 months and younger

Patterned bruising

Bruises in specific patterns like slap, grab or loop marks

REGIONS

INFANTS

PATTERNS

See the signs

Unexplained bruises in these areas most often result from physical assault.

TEN-4-FACESp is not to diagnose abuse but to function as a screening tool to improve the recognition of potentially abused children with bruising who require further evaluation.

O Ann & Robert H. Lurie Children's Hospital of Chicago

TEN-4-FACESp was developed and validated by Dr. Mary Clyde Pierce and colleagues. It is published and available for FREE download at furlechildrens.org/ten-4-facesp.

Objective Screening and Documentation

Over 6 months, all ED patients:

- 1. For children presenting for evaluation of a possible injury, was there a possible or definite delay in seeking medical attention given the severity of injury/injuries?
- 2. Are you concerned that the history may not be consistent with the injury or illness?
- 3. Did you observe ANY bruising or marking in the shape of an object?
- 4. Did you observe TEN-4-FACESp bruising?
- 5. Are there findings that might reflect poor supervision, care or nourishment?
- 6. Are there any additional comments or concerns related to child abuse or neglect?

Under 6 months, instead of #3 and #4:

Did you observe ANY bruise, burn, subconjunctival hemorrhage, or frenulum injury?

Case Study

Will

- 12 years old, no PMHx
- Recently home from camping trip
- Presents to ED with fever, fatigue, chills, body aches, lethargy
- T 39.5, HR 145, RR 24, BP 85/48, Sats 91

Pediatric Assessment Triangle (plus vitals):

Breathing

Circulation

Situational Awareness

- Alterations in Appearance (fatigue) and Circulation (dizziness, nausea, fever, cap refill delayed)
- Slight tachypnea... maybe just anxious?

A + C = Shock

VS changes are subtle:

- Tachycardia most sensitive sign
- Tachypnea easily missed in kids
- Hypotension is <u>late</u>

Next Steps

High flow O2 (Non-rebreather)

Why, sats are good?!

0 min

Recognize decreased mental status and perfusion.

Begin high flow O₂ and establish IO/IV access according to PALS.

Shock is a state of hypoperfusion, oxygen is not being delivered to the tissues - regardless of good sats

15 min

5 min

If no hepatomegaly or rales / crackles then push 20 mL/kg isotonic saline boluses and reassess after each bolus up to 60 mL/kg until improved perfusion. Stop for rales, crackles or hepatomegaly. Correct hypoglycemia and hypocalcemia.

Begin antibiotics.

Access - IV/IO

Labs - Culture

Fluid refractory shock?

Begin peripheral IV/IO inotrope infusion, preferably Epinephrine $0.05-0.3~\mu g/kg/min$ Use Atropine / Ketamine IV/IO/IM if needed for Central Vein or Airway Access

Titrate Epinephrine 0.05 – 0.3 μg/kg/min for Cold Shock.

(Titrate central Dopamine 5 – 9 μg/kg/min if Epinephrine not available)

Titrate central Norepinephrine from 0.05 μg/kg/min and upward to reverse Warm Shock.

(Titrate Central Dopamine ≥ 10 μg/kg/min if Norepinephrine not available)

Fluids

- 20/kg up to 60/kg
- "don't delay inotropes"

Take Away Points

- Keep in mind pediatric differences
- Use validated tools and a systematic approach
- Consider child development and communication techniques
- Basic interventions save lives
- Early recognition of decompensation is key
- Know your resources:

CHCO OneCall 720-777-3999

CHCO Pathways

https://www.childrenscolorado.org/healthprofessionals/clinical-resources/clinical-pathways/

Thank you

Questions?

Case Study

Aviana

- 3 years old, PMHx febrile seizures x2
- Presents with "trouble breathing and a barky cough"
- You note she appears flushed, tachypnea, stridor which is worse with crying, and moderate suprasternal retractions (AKA ???)

Pediatric Assessment Triangle

Appearance

Breathing

Situational Awareness

Alteration in Breathing (tachypnea, stridor, tracheal tug)

B = Respiratory Distress

Focused assessment

Vital Signs:

T 38

HR 126

BP 90/50

RR 52

Sats 98

Further Assessment:

No murmur

High-pitched sounds - whistle or squeak

Warm extremities, good pulses

Next Steps

What's on your differential?

 <u>Croup</u>, Foreign Body, Epiglottitis, Anaphylaxis

Keep calm, position of comfort

Access? Oxygen?

Meds?

• Racemic epi, dexamethasone

Case Study

Sam

- 5 days old
- Uncomplicated pregnancy and birth, first baby
- Presents with poor feeding, fast breathing, lethargy, mottled skin, delayed cap refill

Pediatric Assessment Triangle

Appearance

Breathing

Situational Awareness

Alterations in Appearance (lethargy)

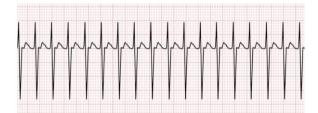
Breathing (tachypnea) and

Circulation (mottled skin, cool extremities)

A + B + C = Cardiorespiratory Failure

On the monitor, focused assessment

Monitor (cycle that BP):


T 38

HR 220

BP 60/46

RR 65

Sats 95

Further Assessment:

Fast HR, no murmur

Crackles on BS

Liver down 3cm

Cool extremities

Delayed cap refill, poor pulses

Next Steps

High flow O2

Access - IV/IO

What med?

Labs

Glucose

Fluids

Dose for 4kg baby

0 min

5 min

Recognize decreased mental status and perfusion. Begin high flow O₂ and establish IO/IV access according to PALS.

If no hepatomegaly or rales / crackles then push 20 mL/kg isotonic saline boluses and reassess after each bolus up to 60 mL/kg until improved perfusion. Stop for rales, crackles or hepatomegaly. Correct hypoglycemia and hypocalcemia.

Begin antibiotics.

15 min

Fluid refractory shock?

Begin peripheral IV/IO inotrope infusion, preferably Epinephrine 0.05 – 0.3 µg/kg/min Use Atropine / Ketamine IV/IO/IM if needed for Central Vein or Airway Access

Titrate Epinephrine 0.05 – 0.3 μg/kg/min for Cold Shock.

(Titrate central Dopamine 5 – 9 μg/kg/min if Epinephrine not available)

Titrate central Norepinephrine from 0.05 μg/kg/min and upward to reverse Warm Shock.

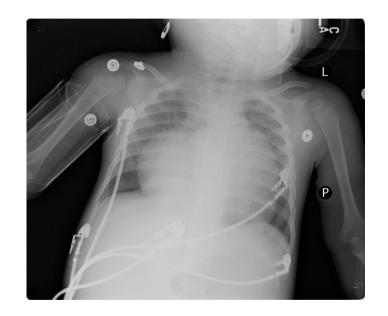
(Titrate Central Dopamine ≥ 10 μg/kg/min if Norepinephrine not available)

60 min

Catecholamine-resistant shock?

If at risk for Absolute Adrenal Insufficiency consider Hydrocortisone.

Use Doppler US, PICCO, FATD or PAC to Direct Fluid, Inotrope, Vasopressor, Vasodilators


Goal is normal MAP-CVP, ScvO₂ > 70%* and Cl 3.3 – 6.0 L/min/m²

Infant Cardiogenic Shock

- Could just be SVT... but what if sat on L toe was 75?
- Early queues:
 - BP was 60/46 (narrow)
 - Crackles, hepatomegaly
 - Mottled, cool
- Prostaglandin (PGE1) 0.05 mcg/kg/min until duct dependent defect excluded
 - PDA closing can uncover coarc or other things...
 - Pulses and BP in all 4 extremities, call cardiology
 - What side effect do you anticipate?

