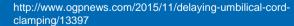
SEPTEMBER 2025

Neonatal Emergencies

Tera N. Carter, BSN, RNC-NIC, CNPT

Neonatal Resuscitation

- The approach to neonatal resuscitation & adult resuscitation is very different
- The focus of neonatal resuscitation is ventilation, ventilation!


Delayed Cord Clamping

• Per NRP delay clamping the cord after birth for at least 30 - 60 seconds unless contraindicated (eg. abruption, maternal hemorrhage, cord avulsion)

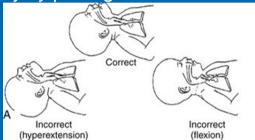
 Studies have shown that term infants receive approximately 80 ml of blood transferred from the placenta at 1 minute and 100ml at 3 minutes

- Benefits of Delayed Cord Clamping All Infants
 - Increased hemoglobin levels
 - Increased ferritin and HCT at 4 week of age
 - Less fluctuation in HR and Cardiac Output
 - Increased myelin content in the brain at 12 months
- Benefits of Delayed Cord Clamping Premature Infants
 - Decreased mortality prior to discharge
 - Decreased Intraventricular Hemorrhage (IVH)
 - Decreased Necrotizing Enterocolitis (NEC)
 - Decreased hospital stay

EFFECTIVE VENTILATION IS THE MOST IMPORATION INTERVENTION FOR THE APNEIC OR BRADYCARDIC NEONATE

- Give just enough volume to see the chest rise
- · If you are having trouble achieving good chest rise use MR. SOPA
 - M = Mask Reposition
 - R = Reposition the Head
 - S = Suction
 - O = Open the Mouth
 - P = Increase the Pressure
 - A = Alternate Airway

Rate is 40 - 60 Breaths per minute


(Weiner & Zaichkin, 2021)

PPV and Advanced Airway

Open airway by placing infant in the sniffing position

 Make sure it's the right size mask when creating a seal with the mask. Ensure that you are not occluding the soft tissue of the neck

Supraglottic Devices

IGEL Size 1 (2 - 5kg)

https://www.flemingmedical.ie/airways/

LMA Size 1 (< 5kg)

https://www.tomwademd.net/ne onatal-resuscitation-programuse-of-the-laryngeal-maskairway/ Air-Qsp3G Size 0 (<2kg) Size 0.5 (2-4 kg)

Oxygen in the Delivery Room

What Fio2 should you start resuscitation in?

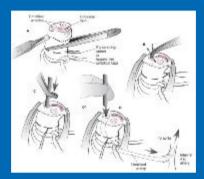
- Full Term Infant: Fio2 21%
- Premature Infant (<35 weeks): Fio2 21% 30%

Targeted Preductal Spo ₂ After Birth	
1 min	60%-65%
2 min	65%-70%
3 min	70%-75%
4 min	75%-80%
5 min	80%-85%
10 min	85%-95%

Premature Delivery

Infant less than 32 weeks

Extra Supplies:


- Plastic Bag
- Extra Warming Equipment

UVC / Peripheral IV / IO Access

- Umbilical Venous Access
 - Low lying UVC placement
 - Catheter inserted to a depth of ~5cm
 - Ensure blood return

https://obgynkey.com/umbilical-vessel-catheterization/

Peripheral IV Access:

- 24g or 22g catheter
- Can place a peripheral IV anywhere you can see a vein
- Vessels ae very shallow don't always get a flash back

Intraosseous

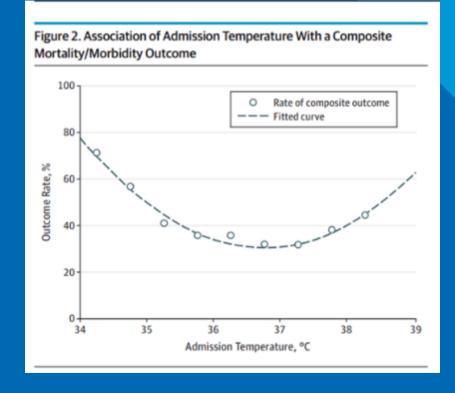
- Proximal Tibia placement
- Manual Placement vs IO drill may be more successful
- · Only attempt in full term infants

https://emedicine.medscape.com/article/1348863-technique

Manage Hypothermia

- Goal Temp: 36.5 37.5 Degrees Celsius
- What does an infant do to conserve heat?
 - Vasoconstrict
 - Metabolize brown fat
 - Increase tone
- Detrimental Effects of Hypothermia
 - Bradycardia
 - Apnea
 - Lethargy
 - Acrocyanosis
 - Metabolic acidosis

Impaired Immune function


Impaired surfactant production

Impaired coagulation

Why is managing temperature important?

- A 2015 study demonstrated a U-shaped relationship between outcomes and temperature
- Lowest rates of mortality and morbidity outcomes associated with temps between 36.5 - 37.2 degrees Celsius

Managing Hypothermia

- What can you do to prevent hypothermia?
 - Increase the temperature of delivery room
 - Provide warm blankets
 - Place hat on infant shortly after birth
 - If infant is stable place skin to skin with mom

BE CAREFUL USING ITEMS THAT ARE NOT TEMPERATURE CONTROLLED!

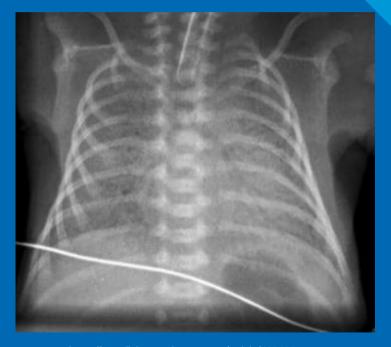
Hypoglycemia

- Defined as a blood glucose <50mg/dl
- Most infants can maintain their blood glucose for a period of time after birth

Hypoglycemia

- Infants at risk for hypoglycemia:
 - Infants with Inadequate Glycogen Stores
 - Premature
 - Small for Gestational Age
 - Infants with Hyperinsulinemia
 - Infants of diabetic mothers (IDM)
 - Infants with Increased Glucose Utilization
 - Sick infants
 - Respiratory Distress
 - Hypothermia
 - Infection
- Treatment:
 - D10 2ml/kg (rate 1ml/minute) recheck in 15 minutes.
 - D10 infusion at 80ml/kg/day

Neonatal Emergencies

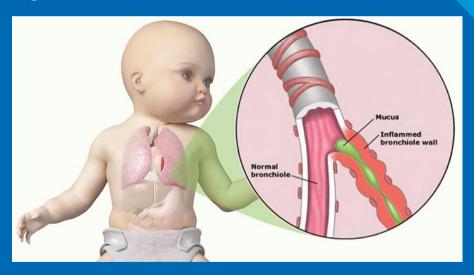


Respiratory Emergencies

Respiratory Distress Syndrome

- Causes of Respiratory Distress Syndrome:
 - Surfactant Deficiency in premature lungs
 - Surfactant Deactivation
 - Meconium Aspiration
 - Blood Aspiration
 - Amniotic Fluid Aspiration
 - Pulmonary Hemorrhage
 - Genetic Causes:
 - Surfactant Protein B Deficiency
- Most commonly seen in preterm or late preterm infants

https://emedicine.medscape.com/article/409409overview


Respiratory Distress Syndrome

- Symptoms
 - Onset is shortly after birth
 - Tachypnea, Retractions, and Grunting
 - Decreased oxygen saturation
 - X-ray with granular opacities with or without air bronchograms
- Treatment
 - Support Breathing
 - CPAP
 - Intubation, if severe
 - Surfactant administration

Bronchiolitis

- Usually caused by RSV
- Symptoms:
 - 1-3 days of cough, nasal discharge/congestion
 - Apnea
 - Tachypnea
 - Coarse breath sounds
 - Retractions
 - May have hypoxia
 - Decreased PO intake
- Treatment:
 - Suction, if needed
 - Respiratory support, if needed
 - NS Bolus and fluids, if hypovolemic

Neonatal Shock

Shock

What is Shock? Inadequate oxygen delivery to the tissues

Compensated vs Uncompensated Shock

- Compensated shock: Body is able to maintain adequate
- blood pressure.
- <u>Uncompensated shock</u>: Compensatory mechanisms are unable maintain adequate perfusion - progression to hypotensive state.

https://personcenteredtech.com/2016/06/06/electronic-records-revelations-jay-ostrowski/baby shocked featuredsize/

Shock Physical Exam

Breathing:

- Tachypnea
- Increased WOB
- Apnea

Circulation:

- Tachycardia (HR > 180)
- Pale or cyanotic
- Mottled
- Poor perfusion
 - Delayed capillary refill
 - Mottled and/or cool skin
- Chest X-ray
 - Heart Size
- Urine output

https://www.paediatricemergencies.com/collapsed-neonate/

Types of Neonatal Shock

Hypovolemic

Circulating Blood Volume

Causes:

- Intrapartum Blood Loss
- Postnatal Blood Loss
- Obstruction
- Dehydration

- Volume
 - NS 10ml/kg/dose
 - PRBC 10 ml/kg/dose

Types of Neonatal Shock

Cardiogenic

Myocardial Dysfunction / Heart Failure

Causes:

- · Birth Asphyxia
- Infection
- Hypoglycemia
- Infection
- Arrythmias
- Congenital defect

- Treat underlying cause
- Consider Inotropes

https://radiopaedia.org/cases/neonatal-cardiomyopathy

Types of Neonatal Shock

Septic

 Loss of vascular integrity and profound hypotension

Causes:

Bacterial or Viral Infection

- Antibiotics if bacterial
- Volume replacement NS Bolus
- Vasopressors

Neurological Emergencies

Seizures

- Neonatal seizures can be very subtle since their cortical development is not complete
- Signs and Symptoms:
 - Eye deviation
 - Lip Smacking
 - Abnormal tongue movements
 - Pedaling
 - Apnea
- Treatment:
 - Lorazepam IV (0.05mg/kg 0.1mg/kg)
 - Midazolam IV or IN (0.05 0.1mg/kg)
 - Check Electrolytes and Glucose

BRUE — Brief Resolved Unexplained Event

- Occurs in infants < 1 year old
- Symptoms include at least 1 of the following:
 - Color change to cyanosis or pallor
 - Apnea or irregular breathing
 - Change in tone (either hypertonic or hypotonic)
 - Altered level of consciousness
- Lasts < 1 min, usually 20-30 seconds
- Infant needs to be evaluated
 - Physical Exam
 - CHECK GLUCOSE
 - Rule out other causes
 - Infant should be monitored with EKG and pulse ox

< 1 year old

< 1 min usually 20-30 s

Brief Resolved

Normal physical exam

Unexplained

Diagnosis of exclusion

Event

Altered Colour (pale / cyanosed) **Breathing**

(altered/apnoea) Response

(decreased) or Tone

(hypo or hypertonia)

Must meet ALL criteria to diagnose BRUE

LOW RISK

No red flags Well child

Serious pathology or recurrence unlikely

Observe 1-4 hours Consider BM, ECG and pertussis PCR

Shared decision making - consider home with early OP follow up (< 24 hrs) if parents confident

HIGH RISK

Any red flag

Needs further assessment and investigation

Admit

Treat any identified illness

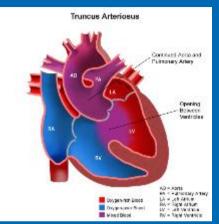
Consider BM, ECG and pertussis PCR

Differentials

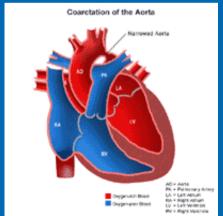
Include airway obstruction, laryngospasm, reflux, congenital heart disease, arrhythmia, infection, sepsis, hypoglycaemia, metabolic disorder, toxins, or NAI.

Red flags

< 60 days old Born at < 32/40 > 1 episode Abnormal history or examination Unwell child Significant PMH Feeding difficulties FH sudden death Social concerns or NAI



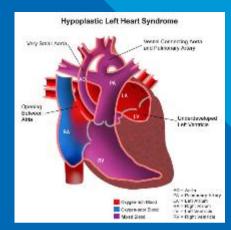
Cardiac Emergencies



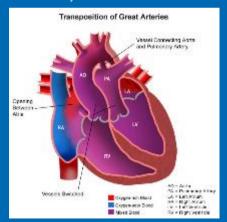
Congenital Heart Disease

- Universal Screening for Cardiac Defects
- Congenital heart disease can be used to describe a large number of cardiac structural anomalies or anomalies of the vessels.
- When the cardiac defect is dependent on the ductus to maintain their systemic blood flow, known as obstructive left sided lesions, the infant can present in significant shock.
- When the cardiac defect is dependent on the ductus for pulmonary blood flow, known as obstructive right sided lesions, the infant can present with severe cyanosis.

https://www.choc.org/heart/c ongenital-heartdefects/truncus-arteriosus/



https://www.choc.org/heart/c ongenital-heartdefects/coarctation-of-theaorta/



Congenital Heart Disease

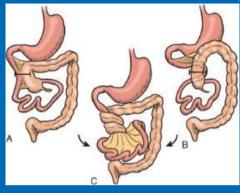
- History and Physical Exam findings that Increases Suspicion of CHD:
 - Poor feeding for several days to weeks fatigue with feeding
 - Absence of temp instability or other signs of sepsis
 - Oxygen desaturation that doesn't respond to O2 therapy
 difference between pre/post ductal saturations
 - Difference between brachial and femoral pulses
 - Hepatomegaly
 - Presence of murmur
 - Tachypnea without other signs of distress

https://www.choc.org/heart/congenital-heart-defects/hypoplastic-left-heart-syndrome/

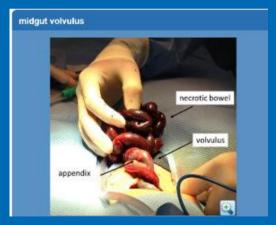
Congenital Heart Disease

- Support Airway, Breathing, Circulation
- Check upper and lower BP's
- Check Pre/Post Ductal Saturations
- Get ECHO to confirm diagnosis
- Prostaglandin E infusion is needed for ductal dependent lesions

GI Emergencies


GI Emergencies

Malrotation with Volvulus


Symptoms

- Abdominal Distention
- May present in shock if there is bowel ischemia

- NPO
- Gastric Decompression
- Transport to a facility that can do an UGI
- Surgery

https://basicmedicalkey.com/malrotation-volvulus-and-bowel-obstruction/

https://www.pedsurglibrary.com/apsa/view/Pediatric-Surgery-NaT/829042/all/Intestinal_Rotational_Abnormalities

Infection

Infection

- Risk Factors
 - Prolonged Rupture of Membranes
 - Maternal Infection
 - Chorioamnionitis
 - Procedures (prior or after birth)
- Symptoms:
 - Poor thermoregulation
 - Any fever in an infant <3 months is concerning
 - Lethargy, irritability, seizures, poor tone
 - Respiratory Distress
 - Tachycardia, hypotension, mottled, poor perfusion
 - Poor feeding
 - Rashes
 - Glucose instability
 - Oomphalitis
 - Monitor for signs of Septic Shock

Infection

Causes:

• Bacterial, Viral, Fungal

- Provide oxygen to maintain saturations
- Treat hypotension with normal saline
- Treat hypoglycemia
- Stabilize Temperature
- Monitor for signs of septic shock
- Start Antibiotics if bacterial

Resources

- American Heart Association. (2022). *Fetal circulation*. https://www.heart.org/en/health-topics/congenital-heart-defects/symptoms-diagnosis-of-congenital-heart-defects/fetal-circulation
- Bhat, B., & Plakkal, N. (2015a). Management of shock in neonates. *The Indian Journal of Pediatrics*, 82(10), 923–929. https://doi.org/10.1007/s12098-015-1758-7
- Bhat, B., & Plakkal, N. (2015b). Management of shock in neonates. *The Indian Journal of Pediatrics*, 82(10), 923–929. https://doi.org/10.1007/s12098-015-1758-7
- Cochran, C. L., & Soni, P. P. (2016). Neonatal emergencies. *Clinical Pathways in Emergency Medicine*, 201–221. https://doi.org/10.1007/978-81-322-2713-7_11
- Deepika, Singh, L., Singh, D., Raghunandan, C., & Dhoat, N. (2022). A clinical study of fetal outcome following early and delayed cord clamping in births associated with anemia in pregnancy. *Journal of Family Medicine and Primary Care*, 11(5), 1789. https://doi.org/10.4103/jfmpc.jfmpc_882_21
- Deviga, T., & Raghu, V. A. (2020). "the misfits": A quick recall to critical diagnosis of pediatric emergency. *Asian Journal of Nursing Education and Research*, 10(2), 240. https://doi.org/10.5958/2349-2996.2020.00051.8
- Gupta, B., Yengkhom, R., Banait, N., Chetan, C., Pareek, P., & Suryawanshi, P. (2022). Hemodynamic parameters after delayed cord clamping (dcc) in term neonates: A prospective observational study. *BMC Pediatrics*, 22(1). https://doi.org/10.1186/s12887-022-03303-4
- Karlsen, K. (2012). The s.t.a.b.l.e. program, learner/provider manual: Post-resuscitation/pre-transport stabilization care of sick infants-guidelines for neonatal heal ... / post-resuscition stabilization) (6th ed.). American Academy of Pediatrics.
- Li, J., Yang, S., Yang, F., Wu, J., & Xiong, F. (2021). Immediate vs delayed cord clamping in preterm infants: A systematic review and meta-analysis. *International Journal of Clinical Practice*, 75(11). https://doi.org/10.1111/ijcp.14709
- Lyu, Y., Shah, P. S., Ye, X. Y., Warre, R., Piedboeuf, B., Deshpandey, A., Dunn, M., & Lee, S. K. (2015). Association between admission temperature and mortality and major morbidity in preterm infants born at fewer than 33 weeks' gestation. *JAMA Pediatrics*, 169(4), e150277. https://doi.org/10.1001/jamapediatrics.2015.0277
- Loyal, J. & Shapiro, E. (2020). Refusal of intramuscular vitamin k by parents of newborns: a review. *Hospital Pediatrics*, 10 (3), 286-294. https://doi.org/10.1542/hpeds.2019-0228
- Mercer, J. S., Erickson-Owens, D. A., Deoni, S. C., Dean III, D. C., Tucker, R., Parker, A. B., Joelson, S., Mercer, E. N., Collins, J., & Padbury, J. F. (2020). The effects of delayed cord clamping on 12-month brain myelin content and neurodevelopment: A randomized controlled trial. *American Journal of Perinatology*, 39(01), 037–044. https://doi.org/10.1055/s-0040-1714258

Resources

- Morton, S. U., & Brodsky, D. (2016). Fetal physiology and the transition to extrauterine life. *Clinics in Perinatology*, *43*(3), 395–407. https://doi.org/10.1016/j.clp.2016.04.001
- Rabe, H., Gyte, G., Díaz-Rossello, J. L., & Duley, L. (2019). Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. *Cochrane Database of Systematic Reviews*, 2019(9). https://doi.org/10.1002/14651858.cd003248.pub4
- Rozance, P. J. (2023). Management and outcome of neonatal hypoglycemia (J. A. Garcia-Prats, J. I. Wolfsdorf, & N. Tehrani, Eds.). *UpToDate*. https://www.uptodate.com/contents/management-and-outcome-of-neonatal-hypoglycemia
- Sellers, A., Lew, A., Tidyk, M., Nakagawa, T., & Sochet, A. (2022). Hemorrhagic disease of the newborn: a case series illustrating preventable harm. *Journal of Pediatric Health*, *37*(1), 67-73.
- Swan, T.B. (2018). Neonatal Delivery and the Acutely III Neonate. In: Zeretzke-Bien, C., Swan, T., Allen, B. (eds) Quick Hits for Pediatric Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-93830-1_6
- Tieder, J. S., Bonkowsky, J. L., Etzel, R. A., Franklin, W. H., Gremse, D. A., Herman, B., Katz, E. S., Krilov, L. R., Merritt, J., Norlin, C., Percelay, J., Sapién, R. E., Shiffman, R. N., & Smith, M. B. (2016). Brief resolved unexplained events (formerly apparent life-threatening events) and evaluation of lower-risk infants. *Pediatrics*, *137*(5). https://doi.org/10.1542/peds.2016-0590
- Wall, S. N., Lee, A., Niermeyer, S., English, M., Keenan, W. J., Carlo, W., Bhutta, Z. A., Bang, A., Narayanan, I., Ariawan, I., & Lawn, J. E. (2009). Neonatal resuscitation in low-resource settings: What, who, and how to overcome challenges to scale up? *International Journal of Gynecology & Obstetrics*, 107(Supplement), S47–S64. https://doi.org/10.1016/j.ijgo.2009.07.013
- Weiner, G. M., & Zaichkin, J. (Eds.). (2021). *Textbook of neonatal resuscitation* (G. M. Weiner & J. Zaichkin, Eds.). American Academy of Pediatrics. https://doi.org/10.1542/9781610025256

