Pediatric Leukemia: an overview of where we are and what's to come

Kelly Faulk, MD MSCS
Kelly.Faulk@childrenscolorado.org
Center for Cancer & Blood Disorders

Disclosures

I have no conflicts of interest to disclose.

Our Objective

Review common presentations, diagnosis, management, and off-therapy principles for pediatric leukemia

Why should I care about pediatric leukemia?

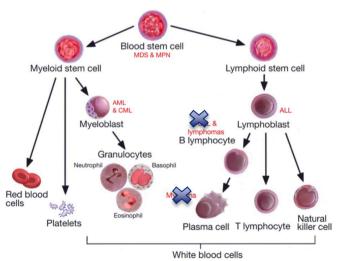
- Prevalence: Represents the most common childhood cancer
- Progress: Area of very active research with rapidly evolving diagnostic and management strategies
- Hope: Many patients will be long-term survivors!

Overview: Pediatric Leukemia

- Presentation/Diagnosis
- Overview of therapies
- Off-therapy considerations

Presentation/Diagnosis

Types of Childhood Leukemia


Acute Lymphoblastic Leukemia (ALL) Acute

95%

85%

15%

Blood Cancer Family Tree

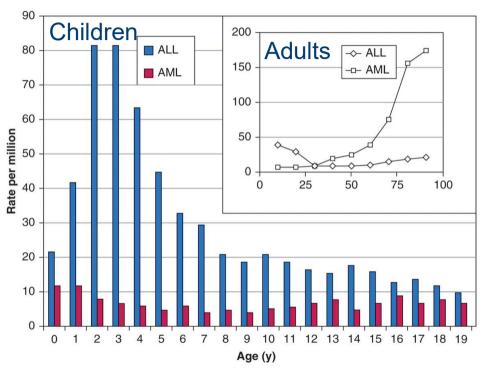
Chronic Myeloid Chronic Leukemia (CML) 5%

Acute Myeloid

Leukemia (AML)

Presentation

/
Children's Hospital Colorado Here, it's different."


Affiliated with

School of Medicine

UNIVERSITY OF COLORADO
ANSCHUTZ MEDICAL CAMPUS

Symptom/Sign	Frequency
Fatigue	50%
Fever	60%
Bone pain	25%
Bleeding	50%
Lymphadenopathy	25-50%
Hepatosplenomegaly	70%
Gingival hyperplasia	10% AML
Petechiae or purpura	25%
Leukemia cutis (AML>ALL)	5%
Chloromas (AML>ALL)	
Hyperleukocytosis	10-20%
Cytopenias	25-50%
Coagulopathy/DIC (APML)	

Epidemiology

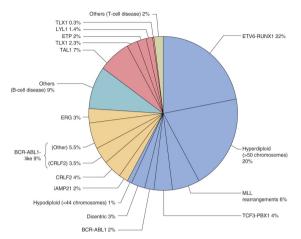
ALL: 1/4 of all childhood cancers

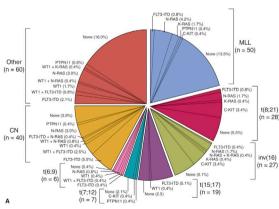
- Nearly 5,000 kids diagnosed/year in US
- Peak 2-5 years old, M>F

AML:

- 500 kids diagnosed/year in US
- No distinct peak age incidence in childhood

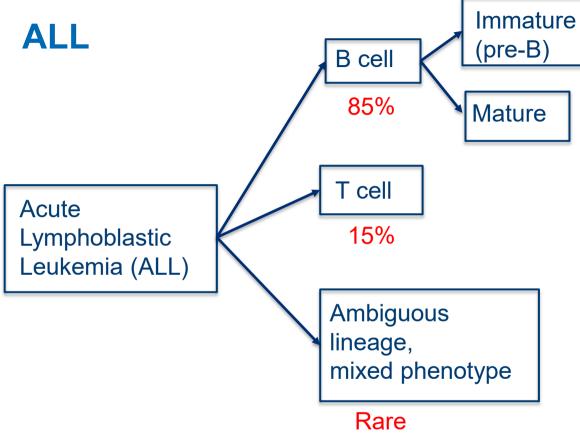
Pizzo & Poplock, Principles and Practice of Pediatric Oncology 7th Edition Brown & Hunger, Acute leukemia in children


Genetics of Leukemia


Proposed to arise from (1) susceptibility loci and (2) somatic mutations in genes critical to hematopoietic cell development

- Sporadic (95%)
- Specific inherited syndromes (<5%)
 - Down Syndrome: 10-20x more likely to develop leukemia than non-DS
 - ALL>AML (except infants)
 - Li-Fraumeni
 - Neurofibromatosis
 - Bloom, Nijmegen breakage, Shwachman-Diamond, Diamond-Blackfan, Ataxia telangiectasia syndromes

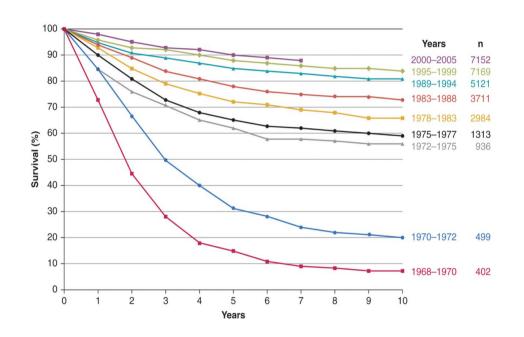
Overview of Therapies



ALL

Leukemia predominantly evaluated by...

95%


5%

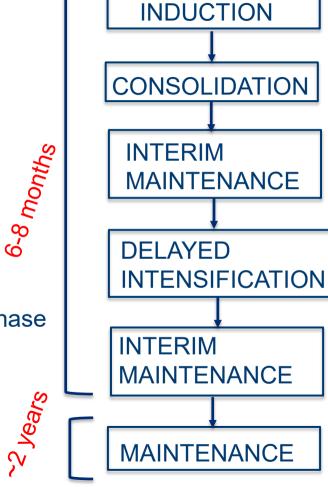
- Morphology: L1, L2, L3
- Flow cytometry: for cell surface markers (immunophenotype)
- Cytogenetics: FISH & chromosomes/karyotype

ALL: Historical context, our poster child

1940-50s: single agents (antifolates)
1954: first patient cured (9 yo F)!
1960s: combination therapy (added vincristine and steroid) + CNS radiation; cooperative groups formed and provided protocols for treatment 1970s: early classification, discovery of cytogenetics and development of risk-based treatment

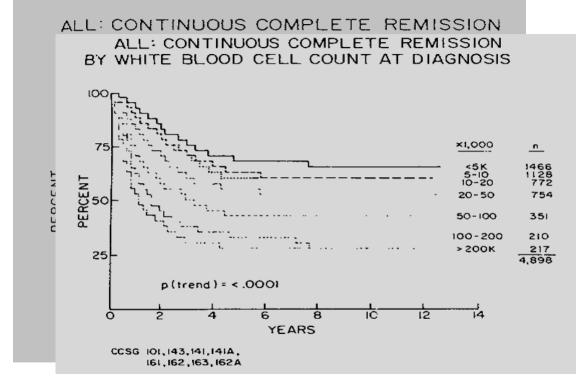
1980s+: ongoing risk stratification

ALL: Therapy Basics


- Multi-agent chemotherapy (predominantly outpatient)
- Risk-adapted therapy
- Preventative CNS therapy
- Post-remission intensification & maintenance

<u>Differing chemo "backbones":</u>

- Standard risk B ALL
- High risk B ALL
 - Ph+ (BCR-ABL) ALL (add tyrosine kinase inhibitor)
 - T ALL (add nelarabine)
- Infant B ALL



1. NCI Risk Grouping

- Age
- Presenting WBC

1. NCI Risk Grouping

- Age
- Presenting WBC

2. Extramedullary disease

CNS and testicular

L	1/	4	В	- 1	=	1	9	5

Definitions of Central Nervous System (CNS)
Disease Status at Diagnosis Based on
Cerebrospinal Fluid Findings

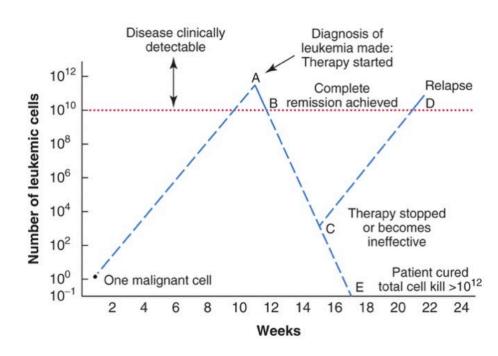
Status	Cerebrospinal Fluid Findings
CNS-1	No lymphoblasts
CNS-2	<5 WBCs/µL with definable blasts on cytocentrifuge examination
CNS-3	≥5 WBCs/µL with blast cells (or cranial nerve palsy)

WBC, white blood cell.

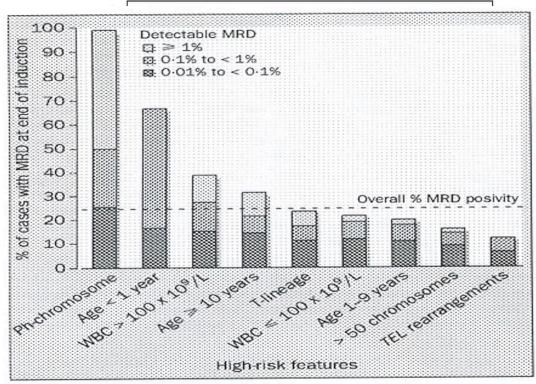
- 1. NCI Risk Grouping
 - Age
 - Presenting WBC
- 2. Extramedullary disease
- 3. Leukemia genetics

FAVORABLE CYTOGENETICS FOR B-ALL PATIENTS

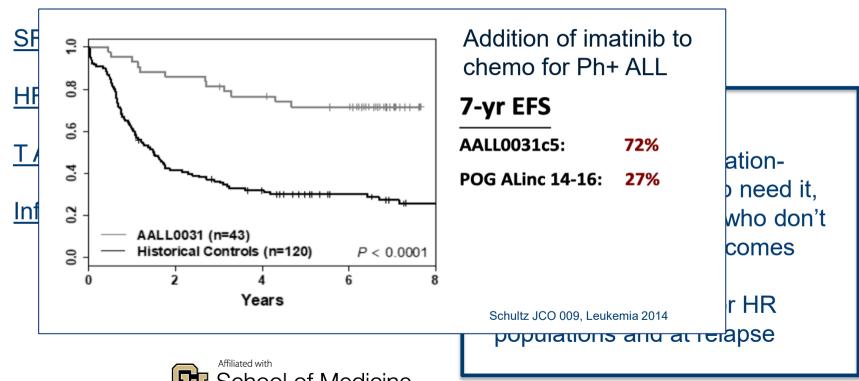
- 1. ETV6-RUNXI as identified by cytogenetics, fluorescence in-situ hybridization (FISH) or molecular studies
- 2. Double trisomies 4, 10 (DT) as identified by cytogenetics, fluorescence in-situ hybridization (FISH), or molecular studies


UNFAVORABLE CYTOGENETICS FOR B-ALL PATIENTS

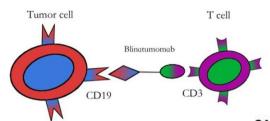
- 1. iAMP21 as identified by central cytogenetic review (fluorescence in-situ hybridization (FISH) or SNP array).
- 2. *KMT2A* (formerly *MLL*) rearrangements as identified by cytogenetics, fluorescence in-situ hybridization (FISH), or molecular studies.
- 3. HYPODIPLOIDY: Fewer than 44 chromosomes and/or DNA index < 0.81, or other clear evidence of a hypodiploid clone.
- 4. t(17;19)(q21-q22;p13.3) or resultant *E2A-HLF* fusion transcript determined by cytogenetics, fluorescence in-situ hybridization (FISH), or molecular studies.
- 5. PHILADELPHIA CHROMOSOME POSITIVE (Ph+) ALL:
 - a) BCR-ABL1 fusion transcript determined by FISH or RT-PCR
 - b) t(9;22)(q34;q11) determined by cytogenetics

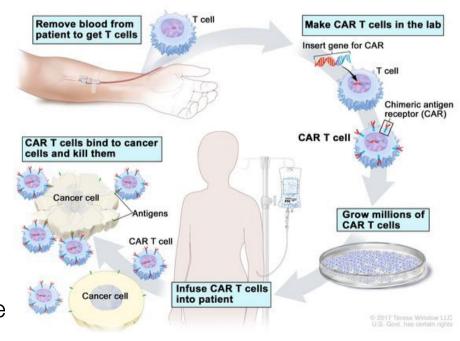

- 1. NCI Risk Grouping
 - Age
 - Presenting WBC
- 2. Extramedullary disease
- 3. Leukemia genetics
- 4. Response to therapy
 - Minimal/measurable residual disease (MRD)

- 1. NCI Risk Grouping
 - Age
 - Presenting WBC
- 2. Extramedullary disease
- 3. Leukemia genetics
- 4. Response to therapy

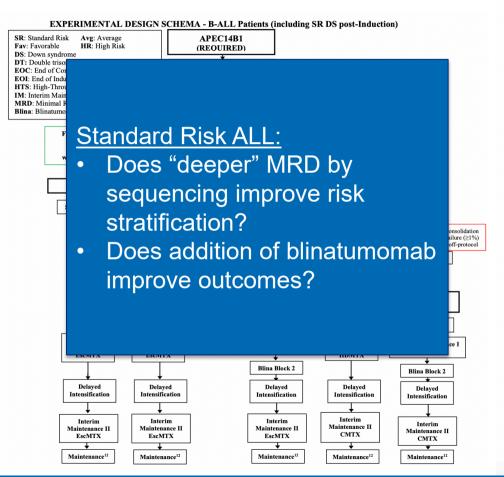


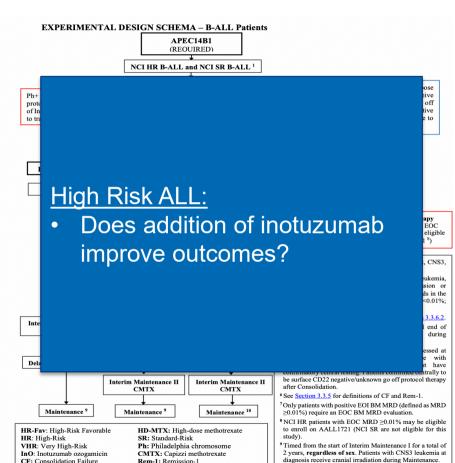
Standard Risk	High Risk
Age 1-9 yo	Age < 1 or ≥ 10 yo
WBC < 50K	WBC ≥ 50K
CNS 1/2 and no testicular disease at diagnosis	CNS 3 or testicular disease at diagnosis
Favorable or no adverse cytogenetics	Adverse cytogenetics
Good response	Poor response
	T cell


ALL: Current Prognosis


ALL: New Agents

- Nelarabine (T cell)
- Blinatumumab (CD19 targeted)
- Inotuzumab (CD22 targeted)
- CAR-T Cells (CD19, 22...)
- **Working on targeted agents for TALL and infants




CAR T-cell Therapy

ALL: Current Protocols

¹⁰ Timed from the start of InO Block 1 for a total of 2 years,

regardless of sex. Patients with CNS3 leukemia at

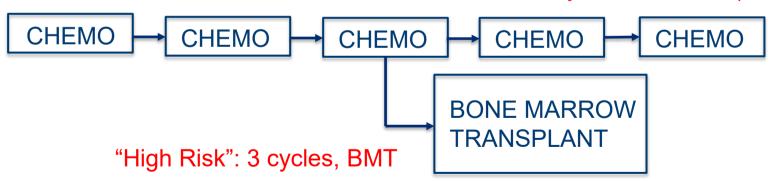
diagnosis receive cranial irradiation during Maintenance.

MRD: Minimal Residual Disease

EQI: End of Induction

EOC: End of Consolidation

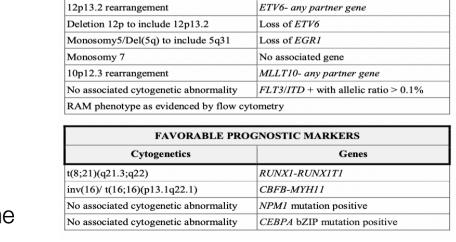
AML



AML: Therapy Basics

- Multi-agent chemotherapy (all inpatient) +/- bone marrow transplant
 - Risk-adapted therapy
 - Newer addition of targeted agents for all patients (anti-CD33; gemtuzumab) and specific genetic subgroups (FLT3 mutations; FLT3 inhibitors)
 - No maintenance (did not improve outcomes)

"Low Risk": 4-5 cycles of chemo (4-6 weeks each)



AML: Risk Classification

1. Leukemia genetics

 With modern therapy, morphology (FAB classification) does not correlate with prognosis

UNFAVORABLE PROGNOSTIC MARKERS

RUNXI-MECOM

NPM1-MLF1

FUS-ERG

DEK-NUP214

KAT6A-CRERRP

CBFA2T3-GLIS2

KMT2A-MLLT10 KMT2A-ABI1

(if 90 days or older at diagnosis)

KMT2A-AFF1 (MLL-MLLT2) KMT2A-AFDN (MLL-MLLT4)

KMT2A-MLLT1(MLL-ENL)

NUP98-any partner gene

Genes

Cytogenetics

t(3;21)(26.2;q22)

t(6;9)(p22.3;q34.1)

t(8;16)(p11.2;p13.3)

t(16;21)(p11.2;q22.2)

inv(16)(p13.3q24.3)

t(4;11)(q21;q23.3)

t(6:11)(a27:a23.3)

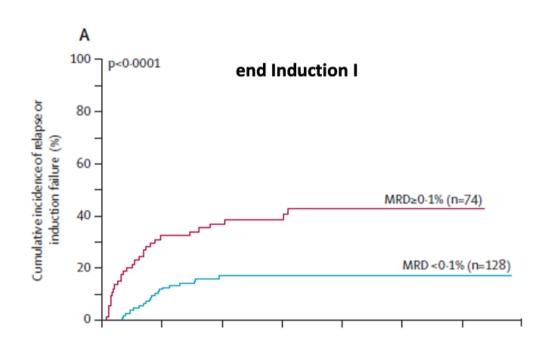
t(10;11)(p12.3;q23.3)

t(10;11)(p12.1;q23.3) t(11;19)(q23.3;p13.3)

11p15 rearrangement

(if 90 days or older at diagnosis)

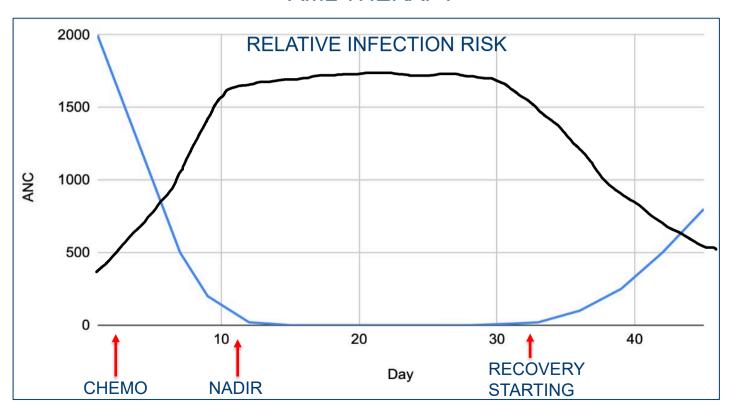
t(3;5)(q25;q34)



AML: Risk Classification

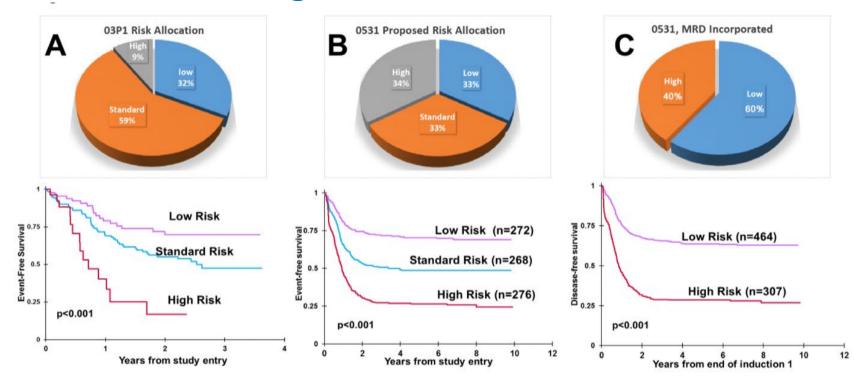
1. Leukemia genetics

2. Response to therapy

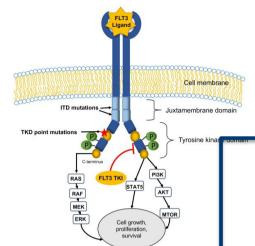


AML: Importance of Supportive Care

AML THERAPY



AML: Current Prognosis



AML: New Agents

- FLT3 inhibitors
- Gemtuzumab (anti CD33)
- CPX-351 (liposomal formulation combining cytarabine and daunorubicin)
- ***Working toward targeted immunotherapies

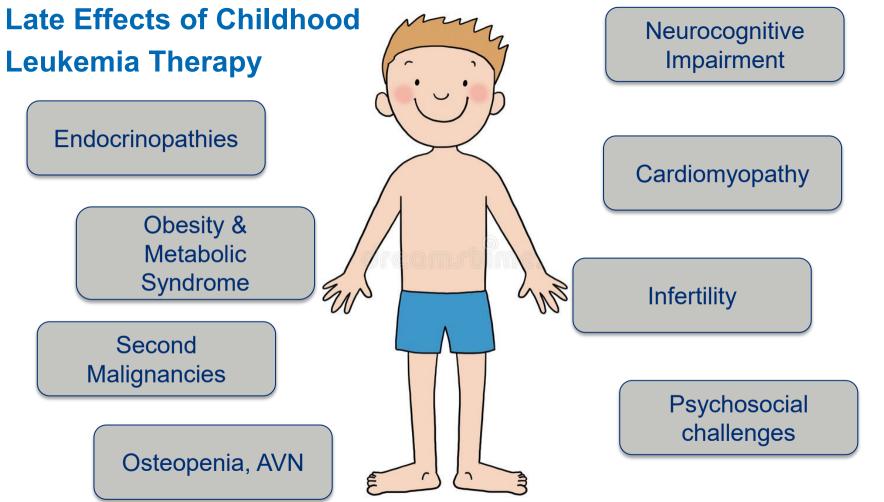
NEEDS:

*Improve outcomes for all, still lots of room for improvement *Attention to reducing late effects where possible

AML: Current Protocol

EXPERIMENTAL DESIGN SCHEMA ❖ During Induction 1, patients diagnosed with FLT3 ITD (AR > 0.1) or non-ITD FLT3 activating mutations will be offered participation in Arm C (FLT3/ITD AR > 0.1) or Arm D (non-ITD FLT3 activating De novo AML mutations) to receive the FLT3 inhibitor gilteritinib in addition to their assigned chemo regimen. Enrollment & Primary Randomization Arm C Arm D FLT3 Activating Mutations Arm A FLT3 ITD AR > 0.1 Arm B Arm BD nd 1 Ind 1 C-351 + DA + GOAML: nd 2 K-351 Ind 2 Does CPX-351 provide equivalent or better outcomes nent to traditional chemo? Does High Risk HR Low Risk CPX-351 reduce cardiotoxicity LR1/LR2 Int 1 compared to traditional AE + Gilt Int 1 AE chemo? Allo LR1 HSCT Int 2 HDAC Int 3 Gilt Gilt Gilt Gilt HDAC Maint Maint Maint Maint

Off-therapy Considerations


Off Therapy

- Central lines typically out ASAP
- OK for routine vaccinations at 6 months off-therapy(new and catch-up from during therapy, s/p BMT requires full re-immunization schedule)
- Oncology off-therapy follow-up
 - Year 1 and 2: Monthly until CBC normalizes, then every 3 months
 - Year 3: Every 6 months
 - Year 4: Annually
 - *These vary for pts who received bone marrow transplant
- HOPE & TACTIC survivorship clinics
- Great resource: www.survivorshipguidelines.org
 - COG Long-term Follow-up Guidelines

Questions

Feel free to contact me! Kelly.Faulk@childrenscolorado.org

