Nutrition in Overuse Injuries

Amanda McCarthy MS, RDN, CSSD Program Coordinator Sports Dietitian

Promoting Optimal Recovery

Energy availability (EA) Substrate needed for activity load

EA: >45kcal/kg FFM in females; >40kcal/kg FFM in males Protein: 1.5g/kg/d Carb: min 5g/kg/d, matched for exercise output Fat: 1g/kg/d, omega 3 intake

Nutrition Timing

o Pre-event meal:

1-4g/kg carb consumed 1-4hr prior

o For immediate recovery after exercise:

- (0–4hrs): 1–1.2g/kg/h carb, then resume daily fuel needs
- 0.11g/kg protein bolus

For daily recovery:

- low intensity or skill based activity: 3–5 g/kg/d
- moderate exercise program (e.g., training 1 hr/d): 5–7g/kg/d
- endurance program (e.g., training 1–3 hr/d): 6–10g/kg/d
- extreme exercise program (e.g., training 4–5 hr/d): 8–12g/kg/d
- During sport:
 - short duration (0–75 min): not required or very small amount
 - medium/long duration (75min-2.5h): 30–60g/h

Hydration

3% body weight losses from dehydration may reduce muscular power, increase fatigue, increase risk of injury

- Sweat rates may be as high as 2.1L/hr, 4% body weight losses
- Limit body mass losses during exercise <2%
 - 13mL/kg/hr fluid during exercise

NCAA A Fact Sheet for Student Athletes: Assess Your Hydration Status https://www.cscca.org/document?id=588

Micronutrient Intake

Teen athletes typically low in: fruit, veggies, dairy

• calcium, D, iron, folate, potassium

High in: sugar sweetened beverages

MICRONUTRIENTS	SOURCES	FUNCTION
Vitamin C	Citrus fruit, red and green peppers, cantaloupe	Antioxidant, wound healing, tissue repair, immune function
Vitamin A	Sweet potato, spinach, carrots, tomatoes	Cell growth and development, immune function
Vitamin D	Sun exposure, oily fish, dairy products, fortified foods	Promotes calcium absorption and bone health
Calcium	Low-fat milk, fortified non-dairy milk, low-fat Greek yogurt, cheese, broccoli, kale, fortified orange juice	Supports skeletal structure and function
Magnesium	Almonds, sesame and sunflower seeds, cashews, peanuts, bananas	Nucleic acid and protein synthesis, improves absorption and metabolism of calcium and vitamin D, improves circulation
Zinc	Lean beef, crabmeat, chicken, cashews, fortified cereals	Wound healing, protein synthesis, immune function
Copper	Sesame, pumpkin and sunflower seeds, cashews, shiitake mushrooms	Assists with red blood cell (RBC) formation, immune function and bone health, regenerates elastin

Tipton KD, 2015

Micronutrient Intake

Table 2: Selenium Content of Selected Foods [10]

	Micrograms	
Food	(mcg) per serving	Percent DV*
Brazil nuts, 1 ounce (6–8 nuts)	544	989
Tuna, yellowfin, cooked, dry heat, 3 ounces	92	167
Halibut, cooked, dry heat, 3 ounces	47	85
Sardines, canned in oil, drained solids with bone, 3 ounces	45	82
Ham, roasted, 3 ounces	42	76
Shrimp, canned, 3 ounces	40	73
Macaroni, enriched, cooked, 1 cup	37	67
Beef steak, bottom round, roasted, 3 ounces	33	60
Turkey, boneless, roasted, 3 ounces	31	56
Beef liver, pan fried, 3 ounces	28	51
Chicken, light meat, roasted, 3 ounces	22	40
Cottage cheese, 1% milkfat, 1 cup	20	36
Rice, brown, long-grain, cooked, 1 cup	19	35
Beef, ground, 25% fat, broiled, 3 ounces	18	33

NIH Selenium Fact Sheet for Health Professionals

Omega-3's

Ideal intake: 1-3g/day

6oz salmon= 1.8-4.5g/serving (wild:farmed)

Figure 1. Changes (means ± SD) in: maximal voluntary isometric contraction (MVC) torque (**A**); muscle soreness (**B**); range of motion (ROM) (**C**); and Interleukin (IL)-6 (**D**), before (pre), immediately after (post), and 1, 2, 3, and 5 days after eccentric contractions in EPA group and placebo. * (p < 0.05); significant difference between groups, † (p < 0.05); significant difference from pre-exercise value in EPA group, # (p < 0.05); significant difference from pre-exercise value in Tsuchiya et al., 2016).

Ochi E. 2018

				Chlorogenic acid	Cherry (200 g)	180-1150	36-230
Polvr	oheno	S		Coumaric acid	Plum (200 g)	140-1150	28-230
ABLE 1 Polyphenols in foods	5			Ferulic acid	Aubergine (200 g)	600-660	120-132
		Polyphenol cont	tent	Sinapic acid	Apple (200 g)	50-600	10-120
	Source (serving size)	By wt or vol	By serving		Pear (200 g)	15-600	3-120
	51207	mg/kg fresh wt	mg/serving		Chicory (200 g)	200-500	40-100
		(or mg/L)			Artichoke (100 g)	450	45
Hydroxybenzoic acids (2, 6)	Blackberry (100 g)	80-270	8–27		Potato (200 g)	100-190	20-38
Protocatechuic acid	Raspberry (100 g)	60-100	6-10		Corn flour (75 g)	310	23
Gallic acid	Black currant (100 g)	40-130	4-13		Flour: wheat, rice, oat (75 g)	70-90	5-7
<i>p-</i> Hydroxybenzoic acid	Strawberry (200 g)	20-90	4-18		Cider (200 mL)	10-500	2-100
Hydroxycinnamic acids (2, 5–7)	Blueberry (100 g)	2000-2200	200-220		Coffee (200 mL)	350-1750	70-350
	Kiwi (100 g)	600-1000	60-100			SPOR	TS ME

Anthocyanins

Anthocyanins (8–10)	Aubergine (200 g)	7500	1500
Cyanidin	Blackberry (100 g)	1000-4000	100-400
Pelargonidin	Black currant (100 g)	1300-4000	130-400
Peonidin	Blueberry (100 g)	250-5000	25-500
Delphinidin	Black grape (200 g)	300-7500	60-1500
Malvidin	Cherry (200 g)	350-4500	70–900
	Rhubarb (100 g)	2000	200
	Strawberry (200 g)	150-750	30-150
	Red wine (100 mL)	200-350	20-35
	Plum (200 g)	20-250	4–50
	Red cabbage (200 g)	250	50

Flavonols

Flavonols (11–18)	Yellow onion (100 g)	350-1200	35-120
Quercetin	Curly kale (200 g)	300-600	60-120
Kaempferol	Leek (200 g)	30-225	6-45
Myricetin	Cherry tomato (200 g)	15-200	3-40
	Broccoli (200 g)	40-100	8-20
	Blueberry (100 g)	30-160	3-16
	Black currant (100 g)	30-70	3-7
	Apricot (200 g)	25-50	5-10
	Apple (200 g)	20-40	4-8
	Beans, green or white (200 g)	10-50	2-10
	Black grape (200 g)	15-40	3-8
	Tomato (200 g)	2-15	0.4-3.0

		Black tea infusion (200 mL)	30-45	6–9
		Green tea infusion (200 mL)	20-35	4–7
		Red wine (100 mL)	2–30	0.2-3
Flavone	es (11–12, 14, 18)	Parsley (5 g)	240-1850	1.2-9.2
	Apigenin	Celery (200 g)	20-140	4–28
	Luteolin	Capsicum pepper (100 g)	5-10	0.5-1
Flavano	ones (19–21)	Orange juice (200 mL)	215-685	40-140
	Hesperetin	Grapefruit juice (200 mL)	100-650	20-130
	Naringenin	Lemon juice (200 mL)	50-300	10-60

Flavonols

Monomeric flavanols (6, 17, 26, 27)	Chocolate (50 g)	460-610	23-30
Catechin	Beans (200 g)	350-550	70-110
Epicatechin	Apricot (200 g)	100-250	20-50
	Cherry (200 g)	50-220	10-44
	Grape (200 g)	30-175	6-35
	Peach (200 g)	50-140	10-28
	Blackberry (100 g)	130	13
	Apple (200 g)	20-120	4-24
	Green tea (200 mL)	100-800	20-160
	Black tea (200 mL)	60-500	12-100
	Red wine (100 mL)	80-300	8-30
	Cider (200 mL)	40	8

ΈR

	Isoflavones (22–25)	Soy flour (75 g)	800-1800	60-135
	Daidzein	Soybeans, boiled (200 g)	200-900	40-180
	Genistein	Miso (100 g)	250-900	25-90
	Glycitein	Tofu (100 g)	80-700	8-70
		Tempeh (100 g)	430-530	43-53
		Soy milk (200 mL)	30-175	6–35

Tart Cherries

45-60 whole cherries 2x/d or 8-12oz juice 2x/d

Benefits: Muscle function Oxidative stress Inflammation- inhibits COX-2 Pain- reduction in DOMS Sleep

Limitations: Water sports

Practical Application

Consistent fueling, even protein distribution throughout the day Adequate fruit and veggie intake (5c/d) Fatty fish 2x/wk Drinking throughout the day (2-3L/d for most athletes)

Limitations More studies needed in overuse injuries Pickiness/compliance in teens Cost

References

Mountjoy M, Sundgot-Borgen JK, Burke LM, et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med. 2018;52(11):687-697. doi:10.1136/bjsports-2018-099193

Jones LC, Cleary MA, Lopez RM, Zuri RE, Lopez R. Active dehydration impairs upper and lower body anaerobic muscular power. J Strength Cond Res. 2008 Mar;22(2):455-63.

Tomlin DL, Clarke SK, Day M, McKay HA, Naylor PJ. Sports drink consumption and diet of children involved in organized sport. J Int Soc Sports Nutr. 2013 Aug 19;10(1):38.

Tipton KD. Nutritional Support for Exercise-Induced Injuries. Sports Med. 2015 Nov;45 Suppl 1:S93-104. doi: 10.1007/s40279-015-0398-4. PMID: 26553492; PMCID: PMC4672013.

Ritz P, Rockwell M. Promoting Optimal Omega 3 Fatty Acid Status in Athletes. Gatorade Sports Science Institute. March 2021. Accessed: 11/1/2022

Tsuchiya Y, Ueda H, Yanagimoto K, Kato A, Ochi E. 4-week eicosapentaenoic acid-rich fish oil supplementation partially protects muscular damage following eccentric contractions. J Int Soc Sports Nutr. 2021 Mar 1;18(1):18.

References

Ochi E, Tsuchiya Y. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in Muscle Damage and Function. Nutrients. 2018 Apr 29;10(5):552.

Vitale KC, Hueglin S, Broad E. Tart Cherry Juice in Athletes: A Literature Review and Commentary. Curr Sports Med Rep. 2017 Jul/Aug;16(4):230-239.

NIH. Selenium Fact Sheet for Health Professionals. <u>https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/</u>. Accessed: 11/1/2022

Claudine Manach, Augustin Scalbert, Christine Morand, Christian Rémésy, Liliana Jiménez, Polyphenols: food sources and bioavailability, *The American Journal of Clinical Nutrition*, Volume 79, Issue 5, May 2004, Pages 727-747, <u>https://doi.org/10.1093/ajcn/79.5.727</u>

