

Testicular GCT – COG vs NCCN (Focus on Primary Treatment)

June 3, 2023

Amanda F. Saltzman MD

Associate Professor, Urology & Pediatrics

@UKYurology

@UKYPedsUro

@PedsUroOnc

@urosaltyMD

Objectives

- 1. Introduction
- 2. COG vs. NCCN (staging, nuances)
- 3. Teratoma "fate"
- 4. Surgical management nuances
 - a) PC-RPLND
 - b) TSS
- 5. Chemotherapy
- 6. Toxicities
- 7. MaGIC and Current trials

Introduction

Generally treated similar to adult testis cancer

- In pediatrics, COG and NCCN guidance is available \rightarrow need to know both
 - Pre-pubertal \rightarrow COG algorithms (not as good with post vs pre-pubertal patients)
 - Post-pubertal \rightarrow NCCN algorithms
- Personal take:
 - NCCN is excellent for post-pubertal patients, GU very familiar
 - Peds oncology much more comfortable with COG, favor these protocols
 - COG groups all GCT together, differences between sites are complex/nuanced and make navigation clunky

COG vs. AJCC/NCCN

Stage	COG	AJCC
I	Limited to testis/neg margin Excisional biopsy with FS and completion orchiectomy at same setting NED beyond testis LNs <1cm	
II	Capsule violation +margin at scrotum or <5cm from cord margin Failure of STMs to normalize/decrease appropriately LNs <1cm	

COG vs. AJCC/NCCN

Stage	COG	AJCC	
I	Limited to testis/neg margin Excisional biopsy with FS and completion orchiectomy at same setting NED beyond testis LNs <1cm		
II	Capsule violation +margin at scrotum or <5cm from cord margin Failure of STMs to normalize/decrease appropriately LNs <1cm	N0 → I	
III	RP LNs ≥ 2cm LNs 1-2cm that fail to resolve in 6 weeks	$N_{any} ightarrow II$	

COG vs. AJCC/NCCN

Stage	COG	AJCC	
I	Limited to testis/neg margin Excisional biopsy with FS and completion orchiectomy at same setting NED beyond testis LNs <1cm		
II	Capsule violation +margin at scrotum or <5cm from cord margin Failure of STMs to normalize/decrease appropriately LNs <1cm	N0 → I	
ш	RP LNs ≥ 2cm LNs 1-2cm that fail to resolve in 6 weeks	$N_{any} ightarrow II$	
IV	Distant mets	$M1 \rightarrow III$	

COG vs. IGCCC Risk Groups

	Low	Standard 1	Standard 2	Poor
Age (y)	0-50	0-<11	11-<25	11-<25
COG stage	I	II-IV	II-IV	II-IV
IGCCC risk	-	-	Good	Intermediate/poor

Age

	Pre-Pubertal	Adolescent/Adult
Malignant potential	70-75% Benign	75% Malignant
Predominant type of malignancy	Pure YST or pure teratoma	Mixed, NSGCT
Metastatic potential	5% at presentation	20-30% at presentation
Teratoma	Common (40%) as pure teratoma, uniformly behaves in a benign manner	Part of a mixed tumor, higher potential for metastatic spread and malignant degeneration

Woo L & Ross JH. "Testicular Tumors in Children and Adolescents." *AUA Update Series* 2019;38:381-9.

Teratoma

Can be found at any age

Commonly mixed and immature in post-pubertal patients

Behavior depends on age/pubertal status of patient

- Benign in pre-pubertal (focal insult, no GCNIS)
- Mets and malignant degeneration in post-pubertal (field effect, with GCNIS)

Post-surgical management depends on pubertal status of patient
 Post-pubertal patient with "pre-pubertal teratoma" on path report -> malignant NSGCT

Teratoma "Fate"

- Growing teratoma syndrome:
 - Enlarging mass despite normalization of STMs
 - Can happen anywhere
 - Path \rightarrow pure teratoma only
 - Chemo resistant \rightarrow require surgical resection

Malignant transformation:

- Co-occurrence and/or development of non-GCT with teratoma
- Distinct from SMN that is treatment-related
- May be seen at diagnosis or in new/persistent mass
- Occurs in <2%, usually seen at diagnosis</p>

PC-RPLND

- Rare to have residual PC mass in pre-pubertal patients
 - Excision of mass only, not formal RPLND
- Much more common in teens/AYAs
- NCCN guidelines with excellent information
 - PC mass = >1cm with normal STMs
 - Referral to high volume center (including ADULT centers) is advised
- COG recs:
 - Full RPLND for patients ≥11y
 - Excision only for patients <11y</p>
 - Ok for normal or stable elevated (not rising) STMs

TSS in Teens/Young Adults – Controversial

Orchiectomy is the standard of care for all malignant testicular cancers

2019 AUA guideline on testicular cancer

- Post-pubertal patients should be treated per adult algorithms (ex. NCCN)
- TSS recommended only in certain scenarios (solitary testis, B tumors, etc.)

TSS in Adult Men – Controversial

- German Testicular Cancer Study Group \rightarrow TSS in select situations
 - Adult males (>20y)
 - Mass <2cm</p>
 - Normal markers
 - Tumor bed biopsy negative, intraoperative frozen section to verify
 - Use of cold ischemia
 - Must receive adjuvant XRT if GCNIS present
- At 7y follow up:
 - <mark>=</mark> 98% NED
 - Preserved T in 85%
 - 50% paternity rate without ART

TSS in Teens/Young Adults – Controversial

- In adults, 2cm cutoff predicts risk of malignancy
- What about in patients <18y old?</p>
 - Review of 24 patients who underwent TSS
 - Negative markers, unilateral masses, any age
 - 2cm size cutoff did not predict benign vs. malignant final pathology

Chemotherapy

NCCN:

EPx4 = BEP x3

Insufficient evidence to favor specific regimen

COG:

- Must include bleomycin
- Main source is French study from 2007
 - No evidence that regimens achieve statistically significant difference
 - Study underpowered so until there is better study, BEPx3 should remain standard

Toxicity of Treatment

- Hypogonadism, infertility
- Cardiovascular disease
- SMN
 - Cumulative 1%/y
 - 20yo with testis cancer \rightarrow 47% chance SMN by age 70y
- Bleomycin lung toxicity
- Etoposide SMN development
- Cisplatin renal, neuro, ototoxicity

MaGIC

- Malignant GCT International Collaborative
- COG + CCLG (UK) = MaGIC
- Application of IGCCC to pediatric GCT \rightarrow poor correlation with outcomes
- Goal \rightarrow create pediatric specific GCT risk stratification
- Found increase likelihood of cure with:
 - Age <11y
 - Stage II/III vs IV
 - Testis vs ovary/EG site
 - Histology, STMs were not prognostic
- EFS >80% → standard risk group (subdivided by age)
- **EFS** <70% \rightarrow poor risk

AGCT 1532

- Phase 3 study
 - Safety, feasibility and tolerability already determined
- Efficacy/toxicity of accelerated vs standard BEP for post-pubertal mets GCT
 - COG poor risk
 - NCCN stage III intermediate/poor risk
- Difference is timing and # of doses of bleomycin
 - More doses and more often with accelerated
 - **–** GSF supplementation allows BM recover faster \rightarrow less waiting between?
 - Accelerated regimens successful with other tumors
 - Improved compliance, patients prefer shorter duration of therapy

AGCT 1531 (SWOG, ECOG, Alliance, NRG, JCCG)

- Goals: minimize toxicity while maintain current survival
 - Evaluate miRNAs
 - Create biobank
- AS for low risk GCTs (adult and peds, seminoma and non)
 Eliminate toxicity of therapy beyond initial surgery; salvage is nearly 100%
 More applicable to ovary, other sites
- EFS of carbo vs cisplatin for standard risk NSGCT patients
 - PEb vs CEb x4 for SR1
 - BEP vs BEC x3 for SR2

AGCT 1531 (SWOG, ECOG, Alliance, NRG, JCCG)

- No longer recommend additional chemotherapy as "consolidation"
- Carbo vs cisplatin for GCT:
 - Carbo with fewer AEs
 - Carbo inferior to cisplatin in adult men with good risk mets testis GCT
 - CRCTU (UK) uses JEb (carbo instead of cisplatin) x >30y
 - Outcomes ≈ countries using cisplatin
 - Key difference between above studies is carbo dose/freq (much higher in UK)
- MaGIC compared COG vs UK (cisplatin vs carbo) for SR:
 - No difference in outcome by risk group
 - Small numbers (79 vs 13 testis patients total)
 - Treatment not randomized

Conclusion

- Several nuanced differences between COG and NCCN
- MaGIC seems to be bridging this gap
- Try to be familiar with both protocols to discuss pros/cons/recs with oncologists
- Familiarity of nuances important when advocating for treatment
- Encourage teens/AYAs to enroll onto COG trials
 - Paucity of data/participation (transitional phase of care)
 - Outcomes are worse
 - Rich area for study to improve outcomes

amanda.saltzman@uky.edu 504-444-1443

@UKYurology @UKYPedsUro @PedsUroOnc @urosaltyMD

