

Testicular GCT – The Importance of Pubertal Status

June 3, 2023

Amanda F. Saltzman MD Associate Professor, Urology & Pediatrics

@UKYurology

@UKYPedsUro

@PedsUroOnc

@urosaltyMD

Objectives

- 1. General
- 2. Age, puberty, STMs
- 3. Teratoma (pre- vs. post-pubertal)
- 4. Role of primary RPLND for pre-pubertal patients
- Surgical management radical orchiectomy vs. testis-sparing surgery (TSS)

Introduction

In adults, most testicular masses are malignant

Orchiectomy is the standard of care for all testicular cancers

In children, 75% of testicular masses are benign

Partial orchiectomy is acceptable to minimize removal of gonadal tissue
AKA testicular sparing surgery (TSS)

In pediatrics, COG and NCCN guidance is available \rightarrow need to know both

- Pre-pubertal → COG algorithms
- Post-pubertal → NCCN algorithms

GCTs and Puberty

Biology is different between younger kids and teens/AYAs

Differences in:

- Histology
- Etiology (field vs focal insult)
- Chromosomal abnormalities
- Gene expression profile
- Incidence

Thus treatment is often different as well

Age

	Pre-Pubertal	Adolescent/Adult
Malignant potential	70-75% Benign	75% Malignant
Predominant type of malignancy	Pure YST or pure teratoma	Mixed, NSGCT
Metastatic potential	5% at presentation	20-30% at presentation
Teratoma	Common (40%) as pure teratoma, uniformly behaves in a benign manner	Part of a mixed tumor, higher potential for metastatic spread and malignant degeneration

Woo L & Ross JH. "Testicular Tumors in Children and Adolescents." *AUA Update Series* 2019;38:381-9.

Serum Tumors Markers

αFP

- Secreted by 90% of YST, never pure seminoma
- Secreted by NSGCTs
- Physiologic elevation in infancy, liver disease; some individuals post-puberty (<20)</p>

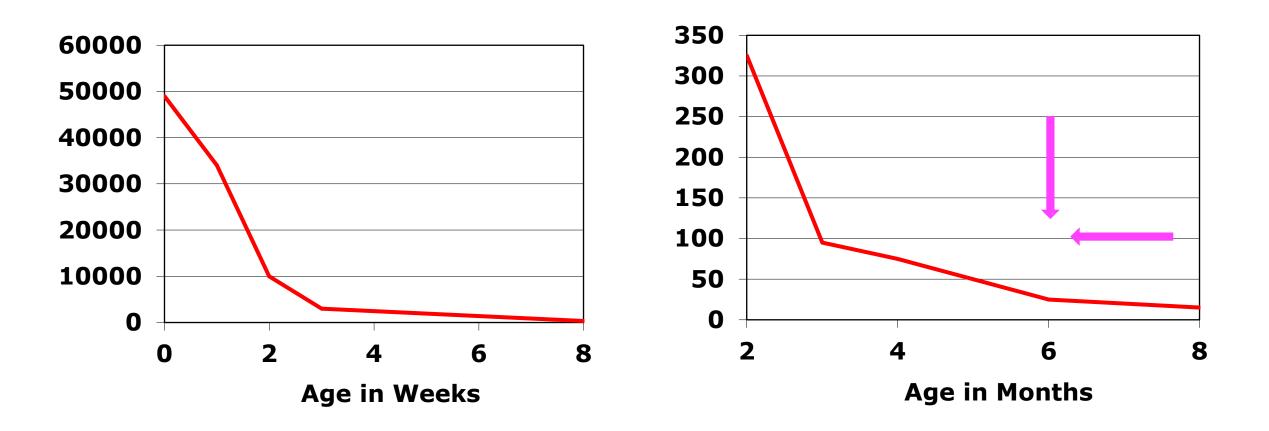
βhCG

- Elevated with NSGCT (chorio), 20% seminoma
- Rarely elevated in pre-pubertal patients
- Elevated with NSGCT (chorio), 20% seminoma, conditions with high LH

LDH

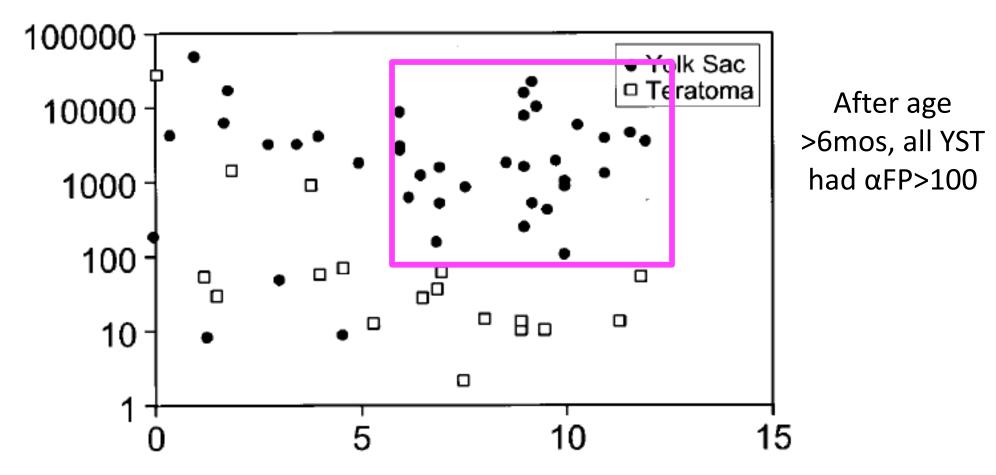
Sign of bulk disease; do not make treatment decisions based on this alone

Inhibin

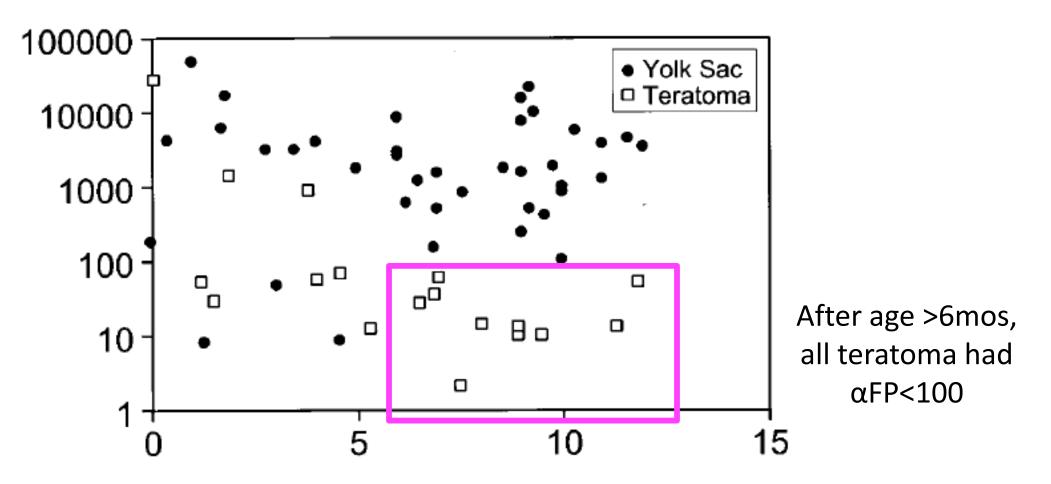

Testosterone

Stromal tumors

Estradiol


αFP - Neonates

Ross JH, Rybicki L, Kay R. J Urol 2002;168:1675-9.


Infants with Testis Masses

Ross JH, Rybicki L, Kay R. J Urol 2002;168:1675-9.

Infants with Testis Masses

Ross JH, Rybicki L, Kay R. J Urol 2002;168:1675-9.

Teratoma

Can be found at any age

Commonly pure and mature in pre-pubertal patients

Behavior depends on age/pubertal status of patient

- Benign in pre-pubertal (focal insult, no GCNIS)
- Mets and malignant degeneration in post-pubertal (field effect, with GCNIS)

Surgical management depends on pubertal status and tumor markers

Cannot differentiate pathology on preoperative imaging

Pre-Pubertal Testis Tumor Registry

AAP Section of Urology from 1980-1996

- Age <12y; mean follow up 37 mos</p>
- Managed with radical or partial orchiectomy

∎ n=392

- 62% with YST
- 23% teratoma (n=92)
- Of those with teratoma:
 - Median age 13 mos
 - O patients with mets at diagnosis or during follow up
 - All elevations in αFP in infants <12mos old*</p>

Grady RW, Ross JH, Kay R. *J Urol 1997*;158:1191-1192. Ross JH, Rybicki L, Kay R. *J Urol* 2002;168:1675-9.

Pre-Pubertal Tumors \rightarrow **More Likely to be Benign?**

- When prior study came out, this conflicted with institutional reports of benign tumors being more common than YST
- 98 patients from 4 major pediatric institutions

Category	Pathology	Frequency
Malignant	YST	15%
Benign	Teratoma mature immature	48% 44% 4%
	Epidermoid cyst	14%
	Stromal tumors granulosa cell Sertoli cell mixed	13% 5% 4% 1%
	Other	9%

Pohl H, et al. J Urol 2004 ; 172 (6 pt 1):2370-2

Pre-Pubertal Tumors \rightarrow **More Likely to be Benign?**

- Vast majority of pre-pubertal testis tumors are benign, not malignant
 - Prior registry likely biased by lower submission of benign cases to a tumor registry
- Given high prevalence of benign pathology → TSS should be considered standard
 - Orchiectomy should be reserved for patients with elevated AFP or tumors known to be malignant (i.e. by frozen section)

Pre-Pubertal Immature Teratoma

• Most teratomas are mature \rightarrow benign

- Excision
- No follow up

Rarely immature


- Complete excision usually curative
- No large series has reported recurrence or mets
 - Mets in single case report
 - Malignant transformation \rightarrow mets limited to 2 case reports
- May consider follow up, but no adjuvant therapy indicated

Post-Pubertal Teratoma May Involve RPLND

• Post-pubertal \rightarrow stage and treat like an adult \rightarrow NCCN

Teratoma is universally malignant NSGCT in this group

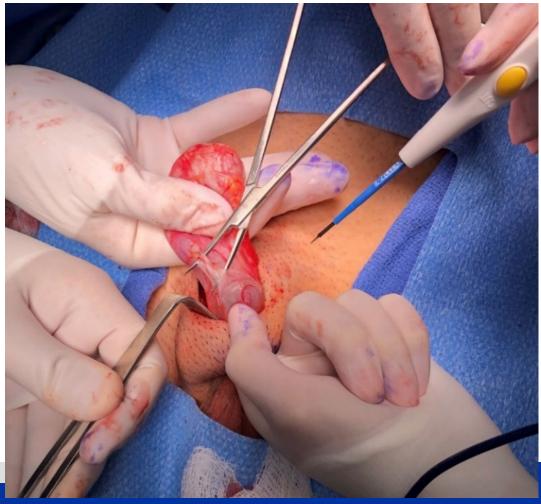
Primary RPLND

Adjuvant therapy after orchiectomy (± chemotherapy)

In COG algorithms for pre-pubertal patients, there is no real role
Nodal involvement → assume mets → prefer systemic chemotherapy

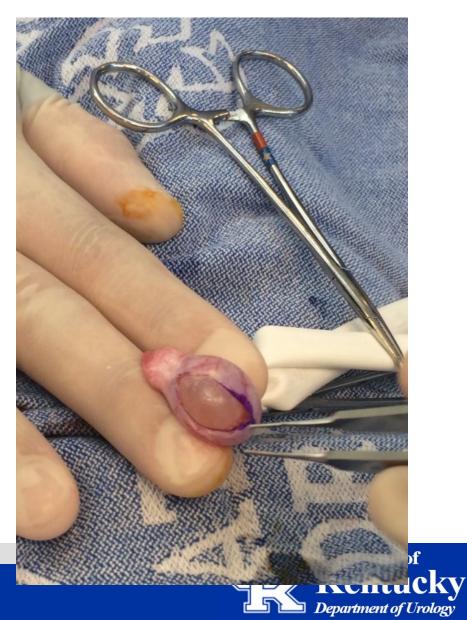
Per COG, LNs are "classed" based on size

- <1cm = negative \rightarrow surveillance
- \sim >2cm = mets \rightarrow systemic chemotherapy
- 1-2cm = indeterminate \rightarrow close interval scan in 4-6 weeks
 - If same/growing, consider excisional biopsy vs. assume mets
 - "Biopsy...by excision of suspicious nodes only without formal RPLND"


Partial vs. Radial Orchiectomy

 \rightarrow TSS

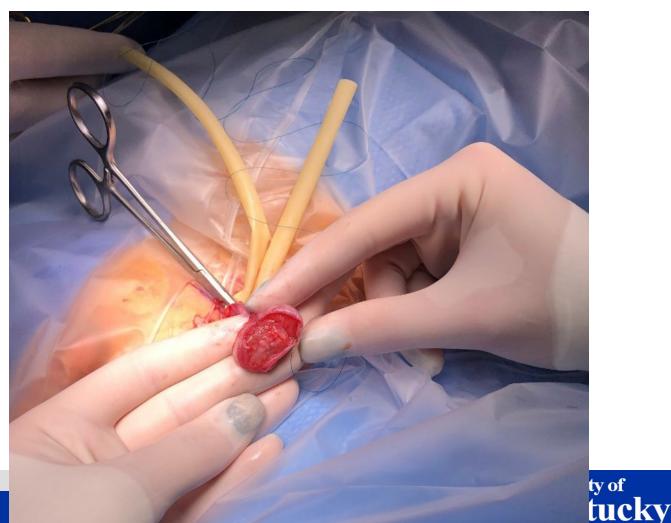
Always inguinal approach


- Pre-pubertal with age-appropriate/normal STMs \rightarrow TSS
- Post-pubertal independent of STMs \rightarrow radical orchiectomy
 - Minimize risk of local recurrence
 - <2cm, 10-15% chance of malignancy</p>
- Some exceptions:
 - Pre-pubertal patient with elevated STMs* \rightarrow radical
 - Post-pubertal patient with:
 - B tumors
 - Solitary testis
 - Mass <2cm with normal STMs</p>

- 1. Be prepared to convert to radical orchiectomy if needed
 - Inguinal incision
 - High control of cord



- 1. Be prepared to convert to radical orchiectomy if needed
 - Inguinal incision
 - High control of cord
- 2. Intraoperative US



- 1. Be prepared to convert to radical orchiectomy if needed
 - Inguinal incision
 - High control of cord
- 2. Intraoperative US
- 3. Frozen section
 - High correlation with final pathology (99%)
 - May guide intraoperative decision-making

- 1. Be prepared to convert to radical orchiectomy if needed
 - Inguinal incision
 - High control of cord
- 2. Intraoperative US
- 3. Frozen section
 - High correlation with final pathology
 - May guide intraoperative decision-making
- 4. Sample adjacent tissue*
 - Surrounding GCNIS?
 - Pubertal status

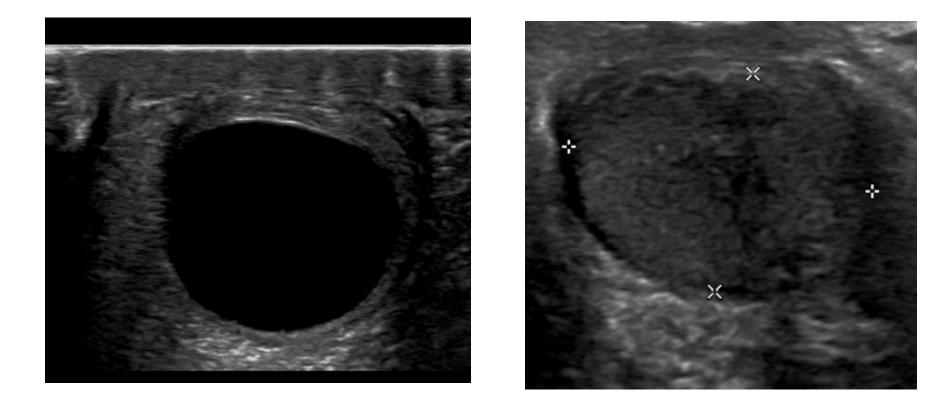
Department of Urology

Controversy – Cold Ischemia

Icing testis during TSS to minimize ischemia-reperfusion injury

Used in initial reports by German Testicular Cancer Study Group¹

- Ischemic testis placed in crushed ice during frozen section review
- To preserve Sertoli cells, which show damage after 30 mins warm ischemia
- Studied in prepubertal rat models comparing warm vs. cold ischemia for 30 mins²
 - No difference in testosterone levels at puberty
 - No difference in sperm counts at puberty
 - More histologic differences in cold ischemia group at puberty


¹ Heidenreich A, *et al. J Urol* 2001;166(6):2161-5. ² McNamara ER, *et al. J Ped Urol* 2014;10(4):593-7.

Controversy – Cord Occlusion

- Helps with hemostasis
 - Only needed when enucleating
- Decrease seeding/spillage?
 - No evidence that this occurs
 - No evidence that this affects oncologic outcomes
 - Probably more related to molecular changes than manipulation alone
- Try to minimize occlusion to balance hemostasis with maximal perfusion of remaining parenchyma

Pre- and Post-op Appearance

Conclusions

Pubertal status of patient is critical!

- Pre-pubertal \rightarrow COG guidelines
- Post-pubertal → adult guidelines
- Remember physiologic elevations of αFP in infants
- RPLND is (generally) not indicated in pre-pubertal patients
- Inguinal approach for oncologic surgery on testis
- TSS is the gold standard for pre-pubertal patients
 - **Be** ready \rightarrow radical orchiectomy
 - Use intraoperative frozen section

amanda.saltzman@uky.edu 504-444-1443

@UKYurology @UKYPedsUro @PedsUroOnc @urosaltyMD

