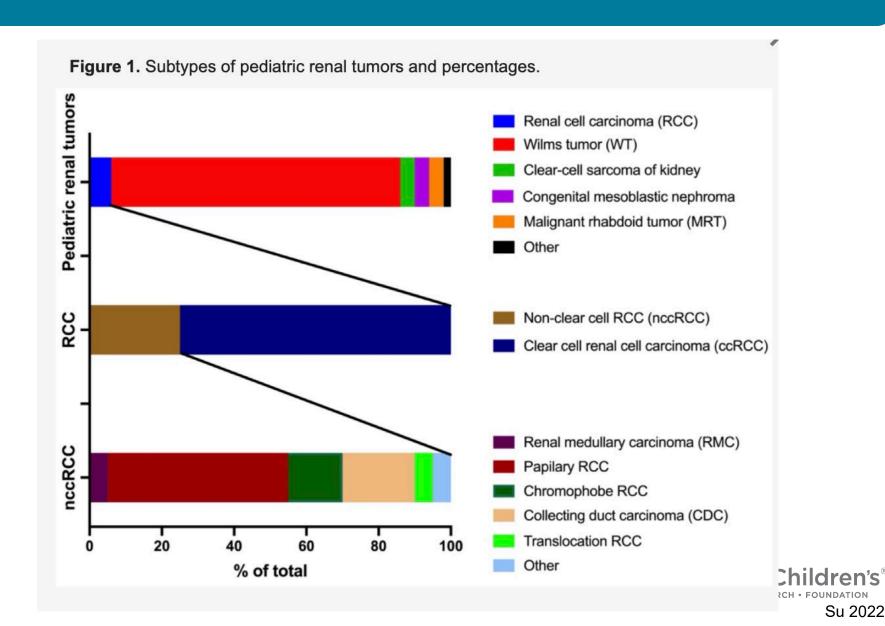
Non-Wilms Pediatric Renal Tumors

June 2023 Kathleen Kieran, MD, MSc, MME


Professor of Urology

Disclosures: None. University of Washington

Seattle Children's Hospitals

How Rare is Rare?

How Rare is Rare?

- Rare enough that the images and histology that I will show you here are (unless otherwise stated) from publicly-available websites
- I do not have the copyright to these pictures, but please see the links if you would like better resolution
- Understanding imaging and histology may help you diagnose someone with a rare cancer!
- Always consider a clinical trial for patients with rare (and generally bad) diseases

Non-Wilms Pediatric Renal Tumors (a short list)

- Renal cell carcinoma
- Renal medullary carcinoma
- Rhabdoid tumors of the kidney
- Clear cell sarcoma of the kidney
- Congenital mesoblastic nephroma
- Ewing sarcoma of the kidney
- Primary renal myoepithelial carcinoma
- Cystic partially differentiated nephroblastoma
- Multilocular cystic nephroma
- Primary renal synovial sarcoma
- Anaplastic sarcoma

Non-Wilms Pediatric Renal Tumors

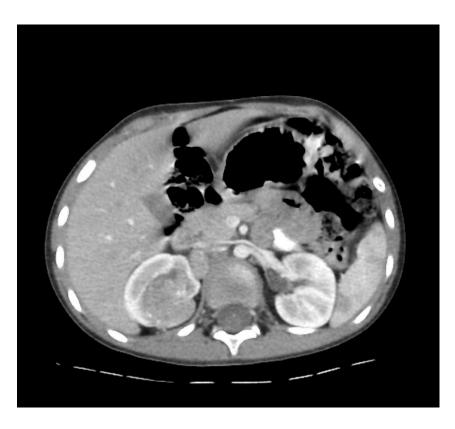
- Renal cell carcinoma
- Renal medullary carcinoma
- Rhabdoid tumors of the kidney
- Clear cell sarcoma of the kidney
- Congenital mesoblastic nephroma
- Ewing sarcoma of the kidney
- Primary renal myoepithelial carcinoma
- Cystic partially differentiated nephroblastoma
- Multilocular cystic nephroma
- Primary renal synovial sarcoma
- Anaplastic sarcoma

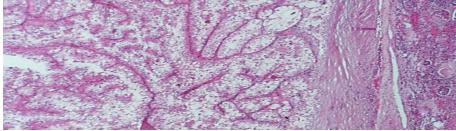
Renal Cell Carcinoma

- About 1 in 20 new pediatric renal tumors (4 cases/million children)
- Uncommon in children aged <15 years (but after that, about 2/3 of renal malignancies are RCC)
- Compared with young adults, children and adolescents are more likely to present with advanced disease

Table 2. Logistic regression analysis of cancer variables

	0—15	15—21	21—30	Total/Av	p Value
% Histology:					<0.0001
Clear cell	13.04	18.99	35	32.49	
RCC NOS	64.6	55.79	48.04	49.52	
Chromophobe	3.11	7.42	8.73	8.35	
Papillary Papillary	19.25	17.8	8.24	9.64	
% Analytic stage:					< 0.0001
1	37.14	51.9	73.98	70.35	
2	17.14	20.57	11.18	12.31	
3	21.43	10.76	6.12	7.2	
4	24.29	16.77	8.72	10.13	
% Grade:					< 0.0001
Well differentiated	14.43	15.23	19.4	18.87	
Moderately differentiated	30.93	46.09	55.42	53.77	
Poorly differentiated	43.3	34.98	21.5	23.42	
Undifferentiated	11.34	3.7	3.68	3.94	
Mean tumor length (cm)	6.86	6.93	5.07	5.33	< 0.0001
% Laterality:					0.926
Unil	99.4	99.71	99.42	99.45	
Bilat	0.6	0.29	0.58	0.55	
% Margin status:	0.0	0.20	0.00	0.00	0.017
Neg	91.61	95.56	95.89	95.67	0.0.7
Pos	8.39	4.44	4.11	4.33	
% Nodal status:	0.00				0.005
All neg	53.85	54.88	71.53	66.67	2.230
1+ Node(s) pos	46.15	45.12	28.47	33.33	




Characteristics of RCC

- Translocation RCC is most common subtype (40-50%)
 - Usually TFE3 gene on Xp11.2 (can combine with multiple other genes); less commonly TFEB gene; occasionally ALK gene
 - Poor survival associated with 9p loss, 17q gain, increased copy number repeats
 - Only known risk factor for translocation RCC is previous chemotherapy with alkylating agent or topoisomerase II inhibitor (4+ years after treatment)
- Histology is usually papillary or clear cell (but 25% unclear/mixed)
- Most important prognostic factors are nodal involvement and stage of disease (though improved survival for LN+ disease compared with adults)

Geller 2004; van der Beek 2021

Translocation Renal Cell Carcinoma: Radiology and Pathology

Syndromes Associated with Pediatric RCC Development

- Von Hippel-Lindau
 - AD, chromosome 3, mutation of tumor suppressor gene
 - Annual screening with RBUS/MRI at 8-11 years
- Tuberous sclerosis
 - Need to rule out perivascular epithelioid cell tumor with smooth muscle and melanocyte markers
- Familial RCC
 - Associated with a translocation of chromosome 3
 - Mutations in Krebs cycle enzymes are common (SDHB, SDHC, SDHD) and are associated with pheochromocytoma and paraganglionoma (not seen with germline mutations)

Hereditary Leiomyomatosis and Renal Cell Carcinoma

- AD, chromosome 1q, mutations in the fumarate hydratase gene
- Usually presents in adulthood (40+ years) with leiomyomas on skin, in uterus
- 10-15% risk of RCC (usually type 2 papillary) development, and metastasize when small
- If family history, test for FH mutations, annual surveillance with MRI beginning at 9-10 years old

Genetic Testing for AYA with RCC

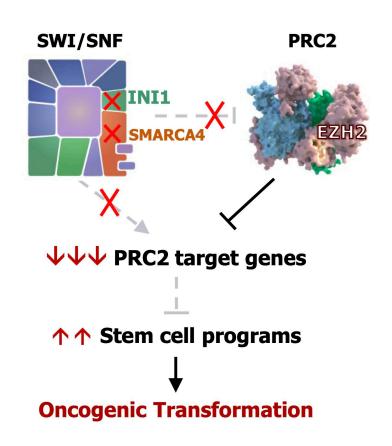
Table 8. Indications for Germline Genetic Analysis (Screening) of Children and Adolescents with RCC^a

Indication for Testing	Tumor Histology	Gene Test	Related Syndrome
Multifocal RCC or VHL lesions	Clear cell	VHL gene	VHL syndrome
Family history of clear cell RCC or multifocal RCC with absent <i>VHL</i> mutation	Clear cell	Chromosome 3 gene translocations	Hereditary non-VHL clear cell RCC syndrome
Multifocal papillary RCC or family history of papillary RCC	Papillary	MET gene	Hereditary papillary RCC syndrome
Multifocal RCC or cutaneous fibrofolliculoma or pulmonary cysts or spontaneous pneumothorax	Chromophobe or oncocytic or clear cell	Germline sequence BHD gene	Birt-Hogg-Dubé syndrome
Personal or family history of early-onset uterine leiomyomata or cutaneous leiomyomata	Type 2 papillary or collecting duct carcinoma	FH gene	Hereditary leiomyomata/RCC syndrome
Multifocal RCC or early-onset RCC or presence of paraganglioma/pheochromocytoma or family history of paraganglioma/pheochromocytoma	Clear cell or chromophobe	SDHB gene, SDHC gene, SDHD gene	Hereditary paraganglioma/pheochromocytoma syndrome

RCC = renal cell carcinoma; VHL = von Hippel-Lindau.

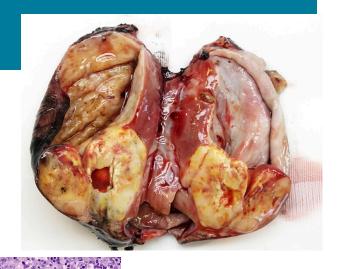
Genomics of RCC

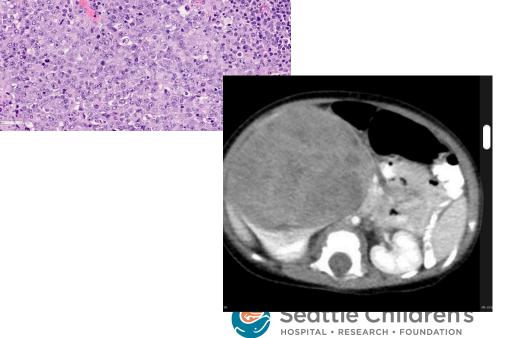
^aAdapted from Linehan et al.[31]


Renal Medullary Carcinoma

- Typically seen in patients with sickle cell disease
 - Presentation: fever, hematuria, weight loss, flank pain
- Associated with SMARCB1
 deficiency (with resultant INI1 loss)
 on chromosome 22q
- Usually widely metastatic at diagnosis
- Poorly responsive to chemotherapy and radiotherapy (median survival 4 months)

Rhabdoid Tumor of the Kidney


- Associated with SMARCB1 mutation (INI gene) on chromosome 22q
 - Less commonly SMARCA4 mutation
 - 1/3 of patients have germline mutations (worse prognosis)
 - For children with this known mutation, surveillance is recommended with brain MRI every 3 months until 5 years old and abdominal ultrasound every 3 months



Rhabdoid Tumor of the Kidney

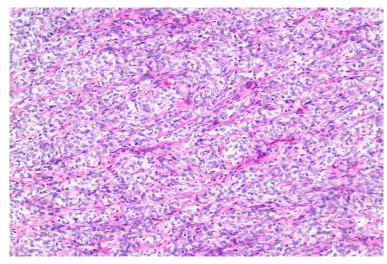
- Typically occur in infants

 11 months of age,
 usually with advanced
 disease
 - May be bilateral
 - Most commonly metastasize to lungs and brain (10-15%)
- Present with fever and hematuria

Rhabdoid Tumor of the Kidney

- Survival is dismal (2-year EFS 37% and OS 38%)
- Earlier surgical resection rather than upfront chemotherapy?
- Progression-free survival is higher in patients with Stage II and III disease if radiotherapy was received (67% vs. 15%)
- Optimal chemotherapy:
 - Doxorubicin appears to be active
 - Carboplatin/etoposide/cyclophosphamide arm of NWTS-5 closed early for poor outcomes
 - Some patients have done well with alkylator therapy and stem cell transplantation

 Melchior 2020


Clear Cell Sarcoma of the Kidney

- About 1 in 20 pediatric renal tumors (usually <3 years old)
 - Worse prognosis if younger or higher stage disease at diagnosis
 - Stage 1: 100% EFS and OS; Stage
 4: EFS 29%, OS 36%
 - Mutations in the BCOR gene (tandem duplications in exon 15)
- Classic metastatic pattern to brain, bone, soft tissue

Clear Cell Sarcoma of the Kidney

 Treatment: multiagent chemotherapy (vincristine, doxorubicin, etoposide, cyclophosphamide) and radiation to the tumor bed after surgical excision

- Late relapses after chemotherapy previously common, now rare after 3 years
 - Most common site is brain

Congenital Mesoblastic Nephroma

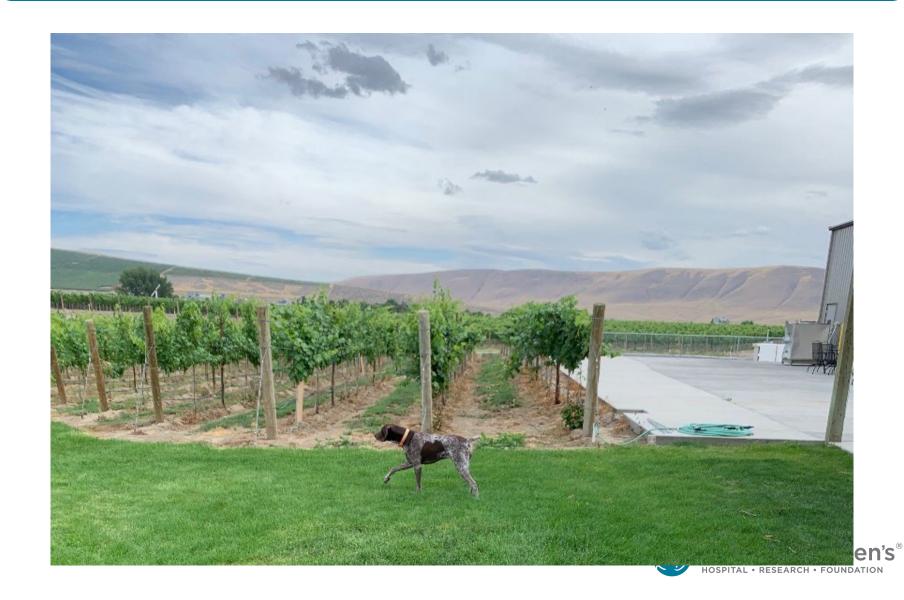
- 3% of all pediatric renal tumors
- Can be seen prenatally (15% have polyhydramnios), very rare after age 2
 - Also presents with hypercalcemia (4%) and hyperreninemia (1%), both of which completely resolve after tumor excision

- Often not malignant, usually presents with local disease
 - Stage 3 disease in only 17%, usually because of + surgical margins or tumor rupture (often involve renal sinus, check medial margins)
 - Rare stage IV disease at presentation (bone)

Congenital Mesoblastic Nephroma

- Three cellular types: classic (42%), cellular (39%), mixed (10%)
- Congenital anomalies are rare:
 GU anomalies, GI malformations,
 polydactyly, hydrocephalus,
 Beckwith-Wiedemann syndrome
- Associated with somatic trisomy 11 and a translocation of chromosomes 12;15 (ETV6 and NTRK3 genes)
 - Never seen in classic CMN

Congenital Mesoblastic Nephroma


- Chemotherapy if Stage III or histology shows cellular subtype, otherwise can be managed with nephrectomy alone
- Chemotherapy is typically vincristine and dactinomycin, though doxorubicin, cyclophosphamide, ifosfamide have been used
- Low mortality (12%), split evenly between disease and treatment (if latter, usually infants)
- Rare relapse (4%), usually local or in brain or bone
 - More common with cellular subtype and stage II seems to see the seems to see

Summary

- Renal tumors are only about 7% of solid organ tumors in children
- Rare pediatric renal tumors are very rare
- Maintain a high index of suspicion
- Consider clinical trials and COG enrollment to optimize outcomes

Thank You! Questions?

