

RMS – Key Surgical Topics

June 2, 2023

Amanda F. Saltzman MD
Associate Professor, Department of Urology & Pediatrics

Objectives

- 1. Approaching new RMS patient
- 2. Local Control
 - i. XRT vs radical surgery
 - ii. PRE, DPE
 - iii. Special circumstances
- 3. Recent/Current COG Trials
- 4. Novel Therapies

Approaching a New RMS

- In general, keep a broad differential
 - Think of what all needs to be done for staging
 - Think multi-disciplinarily:
 - Oncology
 - Urology
 - Radiation Oncology
 - Radiology
 - Pathology
 - Onco-fertility
 - Genetics
- The operation is the easiest part!

Approaching a New RMS

- Imaging
 - Ideally start with an US
 - Look for location, appearance of lesion, impact on surrounding structures
 - What next level imaging is needed?
- Labs
 - CMP, CBC, Coags
 - For para-testicular consider α FP, β hCG and LDH

Approaching a New RMS

- More imaging versus surgery for tissue diagnosis?
 - Can be hard to say, worth a multidisciplinary discussion
 - Going straight to getting tissue can have impact of making a case group III automatically if oncology gives chemotherapy
- Para-testis → likely radical inguinal orchiectomy then more imaging
- Pelvic → likely imaging and then biopsy, rarely resection, and then more imaging

Additional Workup for Staging

- CT CAP
- Bone marrow biopsies
- Bone scan vs PET

Treatment

- Combination of chemotherapy, surgery and XRT
- "Local control" refers to managing site of primary tumor
 - This may be upfront or after neoadjuvant chemotherapy
 - Can be surgical or with XRT
 - Surgical option depends on how "easily" this is done/how disfiguring this may be upfront
 - Worse EFS but same OS without this component
- Must obtain tissue diagnosis regardless

Surgery in RMS

- Potential Timing of Surgery:
 - At diagnosis
 - After biopsy but before chemotherapy (PRE)
 - After chemotherapy (DPE)
 - After chemotherapy and radiation for salvage
- Consider combining procedures
 - BM biopsy, port, etc.

Send specimens fresh (no formalin)

Initial Diagnostic Strategies

- Paratestis mass → inguinal exploration
 - If low suspicion for malignancy → excise with frozen section*
 - If high suspicion for malignancy → radical orchiectomy
 - If tumor adherent to scrotal skin, excise bit of scrotum attached to tumor with specimen

- Pelvic mass → biopsy
 - Can consider complete excision if tumor is resectable...

Case Example

- 8 yo M referred to you after scrotal orchiectomy → RMS
- Otherwise workup normal, no mets
- What now?

- Important to explore groin and complete radical orchiectomy (get proximal cord out)
 - Consider scrotal scar excision
 - Can combine with port, BM biopsies

"Resectability"

- Generally, pelvic RMS are unresectable at the outset
- Advantages of complete upfront resection:
 - Make patient group I → avoid XRT
- Disadvantages of complete upfront resection:
 - Highly morbid if requires exenteration
 - FS margin reliability is low
 - If +margin after resection → worst of both worlds
- COG qualifies surgery often, endorsing only if possible "without loss of form or function"

Biopsy Strategies

- Endoscopic/TURBT
- Transrectal/transperineal US guided using biopsy gun
 - Take LOTS of cores
- Laparoscopic/open
 - Consider LN sampling
 - If residual tumor remains, mark with metal clips

Consider potential seeding with approach

Example – 3y M with B/P RMS, MO

- Can't be stage I
- Will require chemotherapy after tissue diagnosis
- Which tissue diagnosis/local control strategy is best?
- Biopsy only → group IIIa
 - \blacksquare Will get XRT \rightarrow radiation cystitis, SMN risk, bowel issues, etc.
- Radical cystoprostatectomy with -margins -LNs → group I
 - Urinary diversion, infertility, ED

Surgical Timing - PRE

- Pre-chemotherapy re-excision
- Aims for group reduction
- If after biopsy and dx, complete resection is possible with minimal morbidity → re-excise completely <u>before</u> chemotherapy begins
- Most commonly with small bladder dome lesion that can be resected with partial cystectomy and LN sampling
- Commonly applied to non-BP GU RMS
- <50% of BP RMS cases achieve –margin with upfront surgery</p>
 - Resist the temptation to offer early extirpative surgery

Case example

Surgical Timing - DPE

- DPE = delayed primary excision
- Done after chemotherapy as local control
- Goal is for complete excision with margin to reduce dose of XRT
 - Debulking does not help
- Per guidelines, +margin → standard dose XRT (50.4Gy)
- Neg margin → 36 Gy

Benefit of DPE...

- Retrospective analysis of 369 int risk RMS patients
 - 136 B/P
- DPE → decreased XRT and same/improved survival
 - Driven by parameningeal/non-B/P/non-extremity pts
- No difference for B/P patients
 - Many had R1 or R2 resection → was this "good" surgery?
 - Highlights importance of R0 goal if this path is chosen

XRT in Very Young Children

- Special carve out for babies <24mos in COG XRT protocols</p>
- Late effects can be devastating to growing skeleton
- Permanent
- May be seen years after treatment
- Greater potential for growth loss
- Careful consideration for young patients

Diversion After Radical Surgery

- Generally perform incontinent diversion
 - Ureterostomies vs. conduit
- Intraop FS very unreliable if considering orthotopic diversion
 - Have been reported in Italy

Residual Mass after Chemo/XRT

- About 20% of cases; does not seem to affect outcomes
- May required second look operation to assess the response and potentially surgical control
- Mature rhabdomyoblasts can be easily confused with active disease (particularly on frozen section)
 - Recurrence after this is low, but deaths have been reported
 - Observation alone

Example – 3y M with B/P RMS, M0

Scenario 1:

- Biopsy only → VAC → radical surgery for local control
 - Surgery will decrease, not eliminate need for postop XRT
 - If − margin → lower dose XRT
 - If + margin → regular dose XRT
 - Now has surgery AND lower vs. full dose XRT risks...
 - What type of reconstruction?

Scenario 2:

- Biopsy only → VAC → XRT for local control
 - May have residual mass after?
 - May have XRT-related symptoms?
 - Can always have more surgery later if issues arise...

My Thoughts...

- XRT vs surgery (COG vs SIOP) have equivalent outcomes
 - Pick least bad option with family
- I prefer XRT for local control unless young infants
- Even if bladder function deteriorates and reconstruction is undertaken → chance for no further surgery
- Having a bladder, no matter how defunctionalized, preserves the UVJ and provides a plate for augmentation/APV over complete neobladder construction

ARST 0331

- Low risk RMS (embryonal)
- VA with lower doses of cyclophosphamide ± reduced
 XRT
 - Stage I/II, group I/II → VAC x 12 weeks, VA x12 weeks + XRT
 - Stage I, group III or stage III, group I/II → VAC x12 weeks, VA x36 weeks + XRT
- Subset 1 did great (population for ARST 2032)
- Subset 2 had suboptimal outcomes → now intermediate risk

ARST 2032 (multi group study)

- Very low risk and low risk fusion RMS
 - VLR = fusion -, stage I/group I, MYOD1/TP53 wild type
 - LR = fusion -, stage I/group II or stage II/group I or II with MYOD1/TP53 wild type
 - MYOD1 or $TP531 + \rightarrow$ regimen M
- Evaluate FFS with dose/therapy reduction
 - \rightarrow VLR → VA x24 weeks
 - LR \rightarrow VAC x12 weeks, VA x12 weeks

D 9803

- Intermediate risk RMS
- Outcomes comparing VAC vs VAC/VTC
- VAC/VTC did not improve FFS or OS
- VAC remained standard
- Emphasized surgery >> XRT for local control

 Significant concerns about high dose cyclophosphamide and infertility

ARST 0531

- Intermediate risk RMS
- Eval outcomes with dose reduced cyclophosphamide
 - VAC vs VAC/VI
 - Emphasized XRT >> surgery for local control
- Local failure almost 30%
- Local failure, EFS, OS worse than D9803
- "VAC should remain standard"
- Secondary aim to look at bladder dysfunction...
 - Jon Routh trying to get these data

ARST 1431 (multi group)

- Current int risk study
 - Age <40y</p>
 - Launched before 0531 data matured...
- VAC/VI vs VAC/VI ± temsirolimus x8-12 weeks
 - Emphasis on DPE and XRT boost to 59.4Gy if >5cm
- Uses fusion status, not histology
- Evaluating OS and EFS
 - Exploring difference between PAX3 vs PAX7 in fusion+
 - Does FDG-PET response correlate with survival?

ARST 0431

- High risk RMS
 - Outcomes universally poor
- Chemotherapy/XRT intensification
- 56% OS, 38% EFS overall
 - Useful mainly in fusion and age <10y (3y EFS 60-64%)</p>
 - Not helpful for very high risk tumors
 - Stage IV fusion + (3y EFS 6-16%)
 - Stage IV fusion and age ≥10y (3y EFS 32-38%)

ARST 2031 (multi group study)

- High risk RMS
 - Age <50y</p>
 - Stage IV, group IV
 - All fusion +, only ≥10y fusion -
- Outcomes are universally bad in this group
- Comparing EFS between VAC/VINO-C_{PO} vs VINO-AC/VINO-C_{PO}

XRT Effects

- 40% of patients with BP RMS survive event free with apparently normally functioning bladders
- XRT dose affects bladder function, likely deteriorates over time
- Historical study, normal bladder function on UDS only in those who did not receive pelvic XRT
- Significant effects on growing skeleton
 - Permanent, continue years after treatment
 - Limb length discrepancy, facial asymmetry, halting of pelvic growth/gait anomalies
 - Young patients even more sensitive to AEs
- XRT effects have driven innovation...

Novel Therapies

- Proton Beam
- 2. Brachytherapy
- 3. Urinary diversion
- Proton beam acceptable in COG protocols
- Brachy ok but limited availability
- Up front diversion controversial

Proton Beam

- Protons more exact, less "field effect"
- Not universally available
- Proton therapy allows improved targeting of the desired tissue in 3 dimensions
 - Energy/radiation is not delivered into surrounding areas
 - For children, the toxicity reduction is imperative
 - Appears to have equivalent disease control (especially for BP RMS) and limited treatment related AEs
- Appropriate substitute to standard XRT if available

Brachytherapy

- Initially looked at brachy + XRT or protons to decrease damage to surrounding tissues
- French group published using surgery + brachy as local control
 - 95 BP RMS patients age 28mo, mostly ERMS, f/u 64mo
 - Seeds implanted transperineally using plastic tubes
 - 12% relapsed at a median 14mo, 6.3% local only failures
 - 5y OS was 91% and 5y DFS was 84%(15)
 - 15% without relapse had brachy-related urinary issue requiring intervention (similar to XRT reports)
- This is ok per COG, mostly used for vaginal tumors
- Long-term data not available...yet

Diversion after Surgery

- Classically, radical cystoprostatectomy → incontinent diversion → continent diversion after durable survival
- Italian group reviewed their experience (n=11)
 - Immediate ileal neobladder vs. delayed continent diversion
- No patient with immediate reconstruction experienced upper tract deterioration, all continent
- All in the delayed group → CIC, rUTI, upper tract dilation
- Perhaps this may be feasible?

Conclusion

- Take time to think before rushing to the OR
 - Think three steps (years) ahead
- Beware of aggressive surgery in BP RMS; take time to think, prepare, counsel
 - Talk to peds onc, experts in field, pathologists, radiologists
- Look out for newer advances.data in improving QoL
 long-term outcomes for these patients

amanda.saltzman@uky.edu 504-444-1443

